
Chapter 1

Probability basics

1.1 Introduction

Probability is the most important concept in modern science, especially as
nobody has the slightest notion of what it means. ——Bertrand Russell

What is probability? Chance. Luck. Coincidence. Fortune. Randomness.
Coincidence... We all talk about probabilities in everyday life, but mostly in
vague languages. This course is to introduce probability as a logical framework
for quantifying uncertainty and randomness.

Mathematics is the logic of certainty; probability is the logic of uncertainty.

The earliest development of probability is rooted in gambling. For instance,
the renowned Monte Carlo method in statistics, invented by Stanislaw Ulam in
the late 1940s, takes its name from the Monte Carlo Casino in Monaco, where
Ulam’s uncle would borrow money from relatives to gamble. Probability theories
still apply today to analyze gambling odds, but their applications have expanded
to nearly every field. It is the foundation of statistics, machine learning, and
artificial intelligence. It also plays a crucial role in everyday decision-making,
from stock investments to effective strategies to combat an infectious disease.

Probability is a concept that is intuitive to understand but very hard to define
formally. Perhaps, the first formal definition of probability is often attributed
to Pierre-Simon Laplace in the 18th century. In his work "Théorie analytique
des probabilités," published in 1812,
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The probability of an event is the ratio of the number of cases
favorable to it, to the number of all cases possible when nothing
leads us to expect that any one of these cases should occur more
than any other, which renders them, for us, equally possible.

This definition is outdated, as we will soon discover. But before we explore
the modern definition of probability, let’s first clarify some preliminary con-
cepts (based on sets), which is the mathematical language we use to describe
probabilistic events.

1.2 Events and sample spaces

The mathematical framework for probability is built around sets (like the cases
in other math subjects as well).

Definition 1.1. The sample space S of an experiment is the set of all possible
outcomes of the experiment. An event A is a subset of the sample space S. We
say A occurred if the actual outcome is in A.

An experiment can be understood loosely. Anything (a gamble, an exam, a
financial year, ...) can be an experiment. The sample space can be finite,
countably infinite, or uncountably infinite. It is convenient to visualize events
in a Venn diagram.

Set theory provides a rich language for expressing and working with events. Set
operations, especially unions, intersections, and complements, make it easy to
build new events in terms of already-defined events. For example, let S be the
sample space of an experiment and let A,B ⊆ S be events. Then the union
A∪B is the event that occurs if and only if at least one of A and B occurs, the
intersection A ∩ B is the event that occurs if and only if both A and B occur,
and the complement Ac is the event that occurs if and only if A does not occur.

Example 1.1 (Coin flips). A coin is flipped twice. We write ’H’ if a coin lands
Head, and ’T’ if a coin lands Tail. The sample space is the set of all possible
outcomes. Therefore, S = {HH,HT, TH, TT}. Let’s look at some events:

1. Let A1 be the event that the first flip is Heads. Then A1 = {HH,HT}.
Let A2 be the event that the second flip is Heads. Then A2 = {HH,TH}.
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2. Let B be the event that at least one flip is Heads. Then B = A1 ∪A2.

3. Let C be the event that all the flips are Heads. Then C = A1 ∩A2.

4. Let D be the event that no flip is Heads. Then D = Bc.

Here is a list of events described in both English and set notations.

English Sets

sample space S

s is a possible outcome s ∈ S

A is an event A ⊆ S

A occurred sactual ∈ A

A or B A ∪B

A and B A ∩B

not A Ac

at least one of A1, . . . , An A1 ∪ · · · ∪An

all of A1, . . . , An A1 ∩ · · · ∩An

A implies B A ⊆ B

A and B are mutually exclusive (disjoint) A ∩B = ϕ

A1, . . . , Anare a partition of S A1 ∪ · · · ∪An = S and Ai ∩Aj = ϕ for i ̸= j

1.3 Classical probability

Definition 1.2. Naive definition of probability:

P (A) =
|A|
|S|

=
number of outcomes favorable to A

total number of outcomes in A

assuming the outcomes are finite and equally likely.

Example 1.2. Flip a coin twice. Find the probability of landing two heads.

Solution: There are four possible outcomes: {HH, HT, TH, TT}, each with
equal probability. Therefore, P (HH) = 1

4 .

The naive definition is very restrictive. It has often been misapplied by people
who assume equally likely outcomes without justification. Besides, it is easy to
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conceive examples of probabilities that do not fit into this formula, e.g. proba-
bility of rain. By saying it is “naive”, it is definitely not the preferred definition
in this course.

Nonetheless, we do some examples using the naive definition as a warm-up.
Calculating the naive probability of an event A often involves counting the
number of outcomes in A and the number of outcomes in the sample space
S, which usually involve some counting methods. We now review some of the
counting methods (multiplications, factorials, permutations, combinations) that
was introduced in high schools.

Multiplications. Consider a compound experiment consisting of two sub-
experiments, Experiment A and Experiment B. Suppose that Experiment A
has a possible outcomes, and for each of those outcomes Experiment B has b

possible outcomes. Then the compound experiment has a×b possible outcomes.

Exponentiations. Consider n objects and making k choices from them, one
at a time with replacement. Then there are nk possible outcomes.

Factorials. Consider n objects 1, 2, . . . , n. A permutation of 1, 2, . . . , n is
an arrangement of them in some order, e.g., 3, 5, 1, 2, 4 is a permutation of
1, 2, 3, 4, 5. The are n! permutations of 1, 2, . . . , n.

Permutations. Consider n objects and making k choices from them, one at a
time without replacement. Then there are P k

n = n(n−1) · · · (n−k+1) possible
outcomes, for k ≤ n. (Ordering matters in this case, e.g. 1, 2, 3 is considered
different from 2, 3, 1)

Combinations. Consider n objects and making k choices from them, one at a
time without replacement, without distinguishing between the different orders
in which they could be chosen (e.g. 1, 2, 3 is considered no different from 2, 3, 1).
Then there are Ck

n = n(n−1)···(n−k+1)
k! possible outcomes. It literally counts the

number of subsets of size k for a set of size n.

Ck
n is known as the Binomial coefficient, also denoted as

(
n
k

)
, read as “n choose

k”. As it is related to the Binomial theorem, which states that

(x+ y)n =

n∑
k=0

(
n

k

)
xkyn−k.

The following table summarizes the counting methods.
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order matters order doesn’t matter

with replacement nk Ck
n+k−1

non-replacement P k
n Ck

n

We don’t explain the upper-right corner case Ck
n+k−1 as it is not relevant for

our purpose here. Feel free to figure it out yourself if you are interested.

Example 1.3. Find the probability of a “full house” in a five-card hand.

Solution:

P (Full House) =
13C3

4 · 12C2
4

C5
52

= 0.14%.

Example 1.4 (Birthday problem). Suppose there are k people. Find the prob-
ability that two of them have the same birthday.

Solution: Assuming there are 365 days in a year, ignoring leap years. If k > 365,
the probability is 1. If k ≤ 365,

P (no match) =
365 · 365 · · · (365− k + 1)

365k
;

P (match) =



50.7% k = 23

70.6% k = 30

97% k = 50

99.999% k = 100

.

Example 1.5 (Newton-Pepys problem). Isaac Newton was consulted about the
following problem by Samuel Pepys, who wanted the information for gambling
purposes. Which of the following events has the highest probability?

A: At least one 6 appears when 6 fair dice are rolled.

B: At least two 6’s appear when 12 fair dice are rolled.

C: At least three 6’s appear when 18 fair dice are rolled.

1.4 Axiomatic probability

We have now seen several methods for counting outcomes in a sample space,
allowing us to calculate probabilities if the naive definition applies. But the naive
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definition can only take us so far, since it requires equally likely outcomes and
can’t handle an infinite sample space. To generalize the notion of probability,
we’ll use the best part about math, which is that you get to make up your own
definitions. What this means is that we write down a short wish list of how
we want probability to behave (in math, the items on the wish list are called
axioms), and then we define a probability function to be something that satisfies
the properties we want.

Definition 1.3. A probability space consists of S and P , where S is a sample
space, and P is a function which takes an event A ⊆ S as input and returns
P (A) ∈ [0, 1] such that

1. P (ϕ) = 0,

2. P (S) = 1,

3. P (∪∞
n=1An) =

∑∞
n=1 P (An) if A1, A2, . . . , An are disjoint.

Note that this Definition does not imply any particular interpretation of proba-
bility. In fact, any function P that satisfies the axioms are valid “probabilities”.
Thus, the theories of probability do not depend on any particular interpretation.
It is purely axiomatic. From the three axioms, we can derive any property of
probabilities. The interpretation also matters, but it is more of a philosophical
debate. Basically, there are two views in this regard.

• The frequentist view of probability is that it represents a long-run fre-
quency over a large number of repetitions of an experiment: if we say a
coin has probability 1/2 of Heads, that means the coin would land Heads
50% of the time if we tossed it over and over and over.

• The Bayesian view of probability is that it represents a degree of belief
about the event in question, so we can assign probabilities to hypotheses
like “candidate A will win the election” or “the defendant is guilty” even
if it isn’t possible to repeat the same election or the same crime over and
over again.

Theorem 1.1. Probability has the following properties. For any events A and
B, we have

1. P (Ac) = 1− P (A)
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2. If A ⊆ B, then P (A) ≤ P (B).

3. P (A ∪B) = P (A) + P (B)− P (A ∩B).

Proof.

1. Since A and Ac are disjoint and their union is S, apply the third axiom:

P (S) = P (A ∪Ac) = P (A) + P (Ac);

By the second axiom, P (S) = 1. So P (A) + P (Ac) = 1.

2. The key is to break up the set into disjoint sets. If A ⊆ B, then B =

A∪(B∩Ac) where A and B∩Ac are disjoint (draw a Venn diagram for intuition).
By the third axiom, we have

P (B) = P (A ∪ (B ∩Ac)) = P (A) + P (B ∩Ac) ≥ P (A).

3. We can write A ∪B as the union of the disjoint set A and B ∩Ac. Then by
the third axiom,

P (A ∪B) = P (A ∪ (B ∩Ac)) = P (A) + P (B ∩Ac).

It suffices to show that P (B ∩Ac) = P (B)−P (A∩B). Since B ∩A and B ∩Ac

are disjoint, we have

P (B) = P (B ∩A) + P (B ∩Ac).

So P (B ∩Ac) = P (B)− P (A ∩B) as desired.

The last property is a very usueful formula for finding the probability of a union
of events when the events are not necessarily disjoint. We have showed that for
two events A and B. A natural question is to generalize it for three or more
events. For three events,

P (A∪B∪C) = P (A)+P (B)+P (C)−P (A∩B)−P (A∩C)−P (B∩C)+P (A∩B∩C).
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We skip the proof. It can be easily justified by showing a Venn diagram. For
the n-events case, we state it as the following theorem.

Theorem 1.2 (Inclusion-exclusion). For any events A1, A2, . . . , An, it holds
that

P (A1 ∪A2 · · · ∪An) =

n∑
j=1

P (Aj)−
∑
i<j

P (Ai ∩Aj) +
∑

i<j<k

P (Ai ∩Aj ∩Ak)− · · ·

(−1)n+1P (A1 ∩ · · · ∩An).

This formula can be proved by induction using the axioms. Below is a famous
application (known as de Montmort’s problem, named after French mathemati-
cian Pierre Remond de Montmort) of the inclulsion-exclusion theorem.

Example 1.6 (Matching problem). Given n cards, labeled 1, 2, ..., n. Let Aj

be the event “j-th card matches”(the j-th card is numbered as j). Find the
probability of at least one match, i.e. P (A1 ∪A2 ∪ · · · ∪An) =?

Solution: Since all position are equally likely, P (Aj) = 1
n . The probability

of there being two matches is: P (A1 ∩ A2) = (n−2)!
n! = 1

n(n−1) . Similarly,

the probability of there being k matches is: P (A1 ∩ · · · ∩ Ak) = (n−k)!
n! =

1
n(n−1)···(n−k+1) . Using the property of the union of events,

P (A1 ∪A2 ∪ · · · ∪An) =n · 1
n
−
(
n

2

)
1

n(n− 1)
+

(
n

3

)
1

n(n− 1)(n− 2)
− · · ·

=1− 1

2!
+

1

3!
− 1

4!
+ · · ·+ (−1)n+1 1

n!
≈ 1− 1

e
.

1.5 Conditional probability

Abraham Wald, the renowned statistician, was hired by the Statistical Research
Group (SRG) at Columbia University to figure out how to minimize the dam-
age to bomber aircraft. The data they had comprised aircraft returning from
missions with bullet holes on their bodies. If asked which parts of the aircraft
should be armored to enhance survivability, the obvious answer seemed to be to
armor the damaged parts. However, Wald suggested the exact opposite—to ar-
mor the parts that were not damaged. Why? Because the observed damage was
conditioned on the aircraft returning. If an aircraft had been damaged on other
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parts, it likely would not have returned. Thinking conditionally completely
changes the answer!1

The probability of A conditioned on B is the updated probability of event A
after we learn that event B has occurred. Since events contain information, the
occurring of a certain event may change our believes on probabilities of other
relevant events. The updated probability of event A after we learn that event
B has occurred is the conditional probability of A given B.

Definition 1.4. If A and B are events with P (B) > 0, then the conditional
probability of A given B is defined as

P (A|B) =
P (A ∩B)

P (B)
.

Exercise 1.1. Prove that conditional probabilities are probabilities. (Hint:
using the three axioms.)

Theorem 1.3. Properties of conditional probability:

• P (A ∩B) = P (B)P (A|B) = P (A)P (B|A)

• P (A1 ∩ · · · ∩An) = P (A1)P (A2|A1)P (A3|A1, A2) · · ·P (An|A1 . . . An−1)

• P (A|B) =
P (B|A)P (A)

P (B)
(Bayes’ rule)

The last property, Bayes’ rule, quantifies how to update probabilities based on
new evidence. It is named after Thomas Bayes in the 18th century. It gained
prominence posthumously through Richard Price’s publication of Bayes’ work
in 1763. The rule calculates the probability of a hypothesis based on prior
knowledge and new data, foundational for Bayesian statistics.

Historically, Bayes studied the problem in order to prove David Hume wrong.
Hume argued that we cannot directly observe causation; instead, we infer it
from patterns of events. Bayes’ rule allows for a systematic way to update our
beliefs about causal relationships as new evidence emerges, thereby bridging
the gap between empirical observation and theoretical inference. This approach
counters Hume’s skepticism by providing a method for rationally assessing the
likelihood of causes based on observed effects.2

1See an interesting talk by Professor Joseph Blitzstein: "The Soul of Statistics". Available
on http://www.youtube.com/watch?v=dzFf3r1yph8

2See https://faculty.som.yale.edu/jameschoi/bayes-theorem-began-as-a-defense-o
f-christianity.

http://www.youtube.com/watch?v=dzFf3r1yph8
https://faculty.som.yale.edu/jameschoi/bayes-theorem-began-as-a-defense-of-christianity
https://faculty.som.yale.edu/jameschoi/bayes-theorem-began-as-a-defense-of-christianity
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Theorem 1.4 (Law of total probability). Let A1, ..., An be a partition of the
sample space S (i.e., the Ai are disjoint events and their union is S), with
P (Ai) > 0 for all i. Then

P (B) =

n∑
i=1

P (B|Ai)P (Ai).

Example 1.7. Get a random 2-card hand from a standard deck. Find the
probability of getting another ace conditioned on (a) having one ace, or (b)
having the ace of spade.

Solution: The example shows the subtleness of conditional probabilities. The
seemingly indifferent probabilities are in fact different:

P (another ace | one ace) =
P (both aces)
P (one ace)

=
C2

4/C
2
52

1− C2
48/C

2
52

=
1

33
;

P (another ace | ace of spade) =
P (ace of spade & another ace)

P (ace of spade)
=

C1
3/C

2
52

C1
51/C

2
52

=
1

17
.

In the first case, the denominator is interpreted as “at least one ace”; whereas
in the second case, it is “ace of space + another card”.

Example 1.8. The pandemic afflicted roughly 1/3 of the world population.
The PCR test is 98% accurate. (this means if you have been infected, the test
reports positive 98% of the time.) Find the probability of being infected when
a test is positive.

Solution: Let D: actually infected, T : test positive. The test accuracy means:
P (T |D) = 98%. It also means P (T |DC) = 2%. We also know that P (D) = 1/3.
We want to find P (D|T ). Apply the Bayes’ rule:

P (D|T ) =P (T |D)P (D)

P (T )

=
P (T |D)P (D)

P (T |D)P (D) + P (T |DC)P (DC)

=
0.98× 1/3

0.98× 1/3 + 0.02× 2/3
≈ 96%.

Note that how P (T |D) is different from P (D|T ), though confusing the condi-
tionality is quite common in daily life. The difference is even pronounced if the
disease is rare. Suppose P (D) = 10%. Then P (D|T ) = 84%. A large difference
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from the test accuracy rate 98%!

Example 1.9 (Monty Hall problem). Suppose you are on Monty Hall’s TV
show. There are three doors. One of them has a car behind it. The other two
doors have goats. Monty knows which one has the car. Monty now asks you to
pick one door. You will win whatever is behind the door. After you pick one
door. Monty opens another door that shows a goat. Monty then asks you if you
want to switch. Is it optimal to switch?

We present two solutions to the problem. The first one is using the law of total
probability. Let S: succeed assuming switch; Dj : door j has the car, j ∈ 1, 2, 3.
Without loss of generality, assume the initial pick is Door 1. Monty will always
open the door with a goat. By the law of total probability,

P (S) = P (S|D1)︸ ︷︷ ︸
switch from initial pick

P (D1) + P (S|D2)︸ ︷︷ ︸
Monty opens door 3

P (D2) + P (S|D3)︸ ︷︷ ︸
Monty opens door 2

P (D3)

=0 + 1× 1

3
+ 1× 1

3
=

2

3
.

The problem can also be solved using the Bayes’ rule. Let Dj : door j has the
car; Mj : Monty opens door j, j ∈ 1, 2, 3. Assume the initial pick is Door 1. If
Monty opens door 3, the probability of winning the car assuming switching is

P (D2|M3) =
P (M3|D2)P (D2)

P (M3)

=
P (M3|D2)P (D2)

P (M3|D1)P (D1) + P (M3|D2)P (D2) + P (M3|D3)P (D3)

=
1× 1

3
1
2 × 1

3 + 1× 1
3 + 0

=
2

3
.

Note that, if door 1 has the car, Monty will open door 2 and 3 with equal
probability, thus P (M3|D1) = 1

2 . And Monty will never open the door with
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the car, therefore P (M3|D3) = 0. Similarly, if Monty opens door 2, we have
P (D3|M2) =

2
3 . Therefore, the optimal choice is always to switch. Intuitively,

because Monty knows which door has the car, the fact that he always opens the
door without the car gives additional information regarding the choice of the
door.

Example 1.10 (Simpson’s paradox). There are two doctors, Dr. Lee and Dr.
Wong, performing two types of surgeries — heart surgery (hard) and band-aid
removal (easy). Dr. Lee has higher overall surgery success rate. Is Dr. Lee
necessarily a better doctor than Dr. Wong?

Solution: No. Consider the following example:

Dr. Lee Dr. Wong

Heart Band-Aid Total Heart Band-Aid Total

Success 2 81 83 70 10 80
Failure 8 9 17 20 0 20

Success rate 20% 90% 83% 78% 100% 80%

The truth is Dr. Lee has overall higher success rate because he only does easy
surgeries (band-aid removal). Dr. Wong does mostly hard surgeries and thus
has a lower overall success rate. Yet, he is better at each single type of surgery.
To formalize the argument, let S: successful surgery; D: treated by Dr. Lee,
Dc: treated by Dr. Wong; E: heart surgery, Ec: band-aid removal. Dr. Wong
is better at each type of surgery,

P (S|D,E) < P (S|Dc, E)

P (S|D,Ec) < P (S|Dc, Ec);

But, Dr. Lee has a higher overall successful rate,

P (S|D) > P (S|Dc).

This is because there is a “confounder” E:

P (S|D) = P (S|D,E)︸ ︷︷ ︸
<P (S|Dc,E)

P (E|D)︸ ︷︷ ︸
weight

+P (S|D,Ec)︸ ︷︷ ︸
<P (S|Dc,Ec)

P (Ec|D)︸ ︷︷ ︸
weight

.
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A confounder is a variable that influences with both explanatory variable and
the outcome variable, which therefore “confounds” the correlation between the
two. In our example, the type of surgery (E) is associated with both the doctor
and the outcome. Without the confounder being controlled, it is impossible to
draw valid conclusions from the statistics.

In general terms, Simpson’s paradox refers to the paradox in which a trend that
appears across different groups of aggregate data is the reverse of the trend that
appears when the aggregate data is broken up into its components. It is one of
the most common sources of statistical misuse. Here is another example.3

Example 1.11 (UC Berkeley gender bias). One of the best-known examples of
Simpson’s paradox comes from a study of gender bias among graduate school
admissions to University of California, Berkeley. The admission figures for the
fall of 1973 showed that men applying were more likely than women to be
admitted, and the difference was so large that it was unlikely to be due to
chance.

Male Female
Applicants Admitted Applicants Admitted

Total 8,442 44% 4,321 35%

However, when taking into account the information about departments being
applied to, the conclusion turns to the opposite: in most departments, the
admission rate for women is higher than men. The lower overall admission
rate is caused by the fact that women tended to apply to more competitive
departments with lower rates of admission, whereas men tended to apply to less
competitive departments with higher rates of admission.

Department
Male Female

Applicants Admitted Applicants Admitted
A 825 62% 108 82%
B 560 63% 25 68%
C 325 37% 593 34%
D 417 33% 375 35%
E 191 28% 393 24%
F 373 6% 341 7%

Total 2691 45% 1835 30%
3See https://setosa.io/simpsons for a really good illustration of the Simpson’s paradox.

https://setosa.io/simpsons
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1.6 Independence

Definition 1.5. If event B’s occurrence does not change the probability of A,
then we say A and B are independent. That is to say A and B are independent
if

P (A|B) = P (A) when P (B) > 0.

Or more generally, A and B are independent if

P (A ∩B) = P (A)P (B).

(A definition including cases where A or B has zero probability.)

Theorem 1.5. If events A and B are independent, then

• A and Bc are independent;

• Ac and Bc are independent.

A and B are independent means they do not provide information to each other
in the sense that conditional probability is not different from the unconditional
probability. It is not an intuitive idea as it seems. It will become clearer
when we discuss random variables in later chapters. Here we clarify some likely
confusions.

Remark 1.1. Independence is not the same as disjointness.

A and B are disjoint means if A occurs, B cannot occur. But independence
means A occurs has nothing to do with B.

Remark 1.2. Pairwise independence does not imply independence.

Definition 1.6. Events A, B, and C are said to be (mutually) independent
if all of the following equations hold:

P (A ∩B) =P (A)P (B),

P (A ∩ C) =P (A)P (C),

P (B ∩ C) =P (B)P (C),

P (A ∩B ∩ C) =P (A)P (B)P (C).
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If the first three conditions hold, we say that A, B, and C are pairwise in-
dependent. Pairwise independence does not imply independence. Convince
yourself with the following example.

Example 1.12. Consider two fair, independent coin tosses, and let A be the
event that the first is Heads, B the event that the second is Heads, and C the
event that both tosses have the same result. Show that A, B, and C are pairwise
independent but not independent.

Solution: For each event, P (A) = 1
2 , P (B) = 1

2 . Consider the two events
together, there are four possible outcomes: HH, HT, TH, TT. P (C) = P (HH)+

P (TT ) = 1
2 . Thus,

P (A ∩B) = P (HH) =
1

4
= P (A)P (B)

P (A ∩ C) = P (HH) =
1

4
= P (A)P (C)

P (B ∩ C) = P (HH) =
1

4
= P (B)P (C)

But A,B,C are not independent, because

P (A ∩B ∩ C) = P (HH) =
1

4
̸= P (A)P (B)P (C).

Definition 1.7. For n events A1, A2, . . . , An to be (mutually) independent,
we require any pair to satisfy P (Ai∩Aj) = P (Ai)P (Aj) (for i ̸= j), any triplet to
satisfy P (Ai∩Aj ∩Ak) = P (Ai)P (Aj)P (Ak) (for i, j, k distinct), and similarly
for all quadruplets, quintuplets, and so on.

Definition 1.8. Events A and B are conditional independent given C if

P (A ∩B|C) = P (A|C)P (B|C).

Remark 1.3. Conditional independence does not apply independence.

Consider an example of playing chess games. Conditioned on the strength of
your opponents, the outcome of each game is reasonably independent (ignoring
the psychology and fatigues of the players). But the outcomes are not uncon-
ditionally independent, because stronger player has higher chances of winning
each game.

Remark 1.4. Independence does not apply conditional independence.
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Consider an example of fire alarm. Suppose there are two potential causes to
trigger the fire alarm: (1) there is fire; (2) someone smoking. Assume the two
events are independent. But they are not conditional independent if condition-
ing on the alarm beeping. Because if the alarm is on, but no one smokes, we
definitely know there is fire. So there they are not conditional independent.


