
Chapter 2

Random Variables

2.1 Introduction to random variables

In the previous chapter, we have been working with events, which is a concep-
tualization of real world outcomes occurred with probabilities. In this chapter,
we introduce a much more powerful conceptualization that deals with uncertain
outcomes — random variables, which is the foundation of all probability and
statistical studies.

In high school, all mathematical models come with certainty. For example, the
falling time of any object from height h down to the earth is: t =

√
2h
g , where g

is the gravity constant. The outcome is deterministic. The variables that enter
into the equation either have unknown values or known certain values. Errors
are possible only due to frictions or measurement errors.

But many real world processes come naturally with uncertainty. Think about
the temperature tomorrow, or the stock market returns. We can only make
predictions with probabilities. Yes, you may argue this uncertainly is due to
incomplete information. If we have all the knowledge regarding the climate,
we can predict exactly the temperature. But given the imperfection of the
human knowledge, the only feasible option is to build this uncertainly into our
mathematical models. Random variable is core concept and the Swiss knife that
we use to deal with uncertainties mathematically.

Informally, a random variable di!ers from a normal variable as it is “random”.
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A random variable is a variable whose value is uncertain, but
comes with probabilities.

A random variable, say X, is never associated with a certain value, such as
X = 1, or X = 2. It could be any of these values, but with di!erent probabilities,
e.g. P (X = 1) = 0.2, P (X = 2) = 0.4.

Definition 2.1. Given an experiment with sample space S, a random variable
is a function from the sample space S to the real numbers R.

As an example, flipping a coin twice, let X be the number of heads. Then X(·)
is a functions that maps events in {HH,HT, TH, TT} into real numbers. In
our case, the mapping goes like

X(HH) = 2, X(HT ) = 1, X(TH) = 1, X(TT ) = 0.

X is therefore an encoding of events in the sample space into real numbers. We
could, of course, have di!erent encodings. Conder the random variable Y as the
number of tails. Then we have Y = 2→X.

Y (HH) = 0, Y (HT ) = 1, Y (TH) = 2, Y (TT ) = 2.

We could also define Z as the number heads in the 1st toss only. The encoding
goes like

Z(HH) = 1, Z(HT ) = 1, Z(TH) = 0, Z(TT ) = 0.

We have listed three ways of “encoding” the same experiment as random vari-
ables. All of them are valid random variables, but they map the outcomes into
di!erent numbers. We can say that, a random variable is a numeric “summary”
of an aspect of an experiment.

Remark. We usually use capital letters, such as X,Y, Z, to denote random
variables. We use small letters, such as x, y, z, to denote specific values. P (X =

x) means the probability of X taking the value x. “X = x” is an event. In the
example above, X = 2 corresponds to the event HH. Note that we don’t write
P (X). It is meaningless if X takes no value.

Definition 2.2. Let X be a random variable. The distribution of X is the
collection of all probabilities of the form P (X ↑ C) for all sets C of real numbers
such that {X ↑ C} is an event.



CHAPTER 2. RANDOM VARIABLES 28

A distribution specifies the probabilities associated with all values of a random
variable. In the above example, the distribution of X is given by

P (X = 0) =
1

4
, P (X = 1) =

1

2
, P (X = 2) =

1

4
.

The distribution of Y is given by

P (Y = 0) =
1

4
, P (Y = 1) =

1

2
, P (Y = 2) =

1

4
.

The distribution of Z is given by

P (Z = 0) =
1

2
, P (Z = 1) =

1

2
.

You may have noted that the probabilities in a distribution always sums up to
1, as all possible events constitute the entire sample space.

Example 2.1. Roll two fair 6-sided dice. Let T = X + Y be the total of the
two rolls, where X and Y are the individual rolls. Find the distribution for T .

2.2 Discrete and continuous random variables

2.2.1 Discrete distributions

Definition 2.3. We say X is a discrete random variable if X can take only
a finite number k of di!erent values x1, . . . , xk or, at most, an infinite sequence
of countable di!erent values x1, x2, . . ..

The finite or countably infinite set of values x such that P (X = x) > 0 is called
the support of X.

Definition 2.4. If a random variable X has a discrete distribution, the proba-
bility mass function (PMF, sometimes also known as probability function,
or frequency function) of X is defined as the function p such that

p(x) = P (X = x)

where p(x) ↓ 0 for all possible values of x and
∑

all x p(x) = 1.
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Remark. p(x) di!ers from the probability function P (·). p(x) is a real-valued
function. We can manipulate it as normal real-valued functions. Some textbooks
prefer to use f(x). In this book, we use p(x) to distinguish it from the probability
density function for continuous random variables. Sometimes, it is convinient
to add a subscript, pX(x), to specify this is the PMF for random variable X.

Remark. The PMF p(x) of a random variable X must satisfy the following
criteria:

• Nonnegative: p(x) ↓ 0 for all possible values of x;

• Sums to 1:
∑

all x p(x) = 1.

There are di!erent ways to represent a PMF. We can (1) list all the possible
values and their associated probabilities; (2) write a formula for the PMF; or
(3) visualize it in a graph. In our example of two coins, the PMF can be written
as

pX(x) =






1
4 if x = 0

1
2 if x = 1

1
4 if x = 2

.

2.2.2 Continuous distributions

Definition 2.5. We say a random variable X has a continuous distribution
if the possible values of X takes the form of a continuum.

Definition 2.6. For a continuous random variable X, the probability density
function (PDF) of X is a real-valued function f such that

P (a ↔ X ↔ b) =

∫ b

a
f(x)dx

where f(x) ↓ 0 for all x and
∫ +→
↑→ f(x)dx = 1.

Continuous random variables are usually measurements. Examples include
height, weight, temperature, the amount of money and so on.

The probability of a continuous random variable is not defined at specific val-
ues. Instead, it is represented by the area under a curve of the PDF. The
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probability of observing any single value is equal to 0, since the number of val-
ues assumed by the random variable is infinite. For continuous distributions,
P (a < x < b) = P (a ↔ x ↔ b) = P (a ↔ x < b) = P (a < x ↔ b).

More on continuous distributions will be discussed in later chapters.

2.2.3 Cumulative distribution function

Unlike PMF or PDF, a cumulative distribution function can be defined for both
discrete and continuous random variables.

Definition 2.7. The cumulative distribution function (CDF) of a random
variable X is the function F given by F (x) = P (X ↔ x).

For discrete random variables, F (x) =
∑

k↓x p(k).

For continuous random variables, F (x) =
∫ x
↑→ f(t)dt. We thus have dF (x)

dx =

f(x).

Like PMF and PDF, CDF gives the full distribution of a random variable. Given
the CDF, we can figure out any probability distribution of the random variable.
For example, P (x1 < x ↔ x2) = F (x2)→ F (x1).

Theorem 2.1. Any CDF has the following properties:

• P (X > x) = 1→ F (x)

• P (x1 < x ↔ x2) = F (x2)→ F (x1)

• Increasing: if x1 ↔ x2, then F (x1) ↔ F (x2).

• Right-continuous: for any a, F (a) = limx↔a+ F (x).

• F (x) ↗ 0 as x ↗ →↘; F (x) ↗ 1 as x ↗ +↘.

2.3 Practical examples

In this section, we showcase some examples of how we apply random variables
to model real-world scenarios. Anything can be a random variable, the height
of a persion, the number of students in a class, etc. We define something as a
random variable not because it is random in nature, but because we don’t have
enough information give a definite answer.
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Example 2.2 (Height of a person). What is the average height of a man?
While the height of an individual is a specific, measurable figure, asking a broad
question like this leads us into the realm of probability and statistics. For
instance, imagine you’ve just landed in a new country and are curious about
the average height of its residents. This question cannot be answered definitively
without further context; instead, it requires a probabilistic approach.

Let’s define H as a random variable representing the height of a person in that
country. This variable H is governed by an unknown distribution that reflects
the varying heights within the population. To estimate this distribution, we can
collect a sample of individuals from the population. By analyzing this sample,
we can gain insights into the average height and the variability of heights in
the population. This example underscores the use of random variables when we
want to answer general inquires about the attributes of a population.

Example 2.3 (Average temperature). If you are tasked with making a weather
forecast — specifically, to determine the average temperature for a day in
September — how would you approach this question? Given the constraints
of limited resources, such as not having the means to establish climate stations
globally or run complex climate models using supercomputers, your best option
is to treat this problem as one involving a random variable.

Let’s denote T as the random variable representing the average temperature
in September. To answer the question, you would first analyze historical tem-
perature data to estimate the distribution of T . By examining this historical
distribution, you might discover that the average temperature typically falls
between 20 and 25 degrees Celsius for most September days.

While this estimate is far from perfect, it represents the best inference you
can make given the constraints. It is certainly more reliable than making a
completely random guess. This example underscores the use of random variables
when we our knowledge of a complex phenomenon is constrainted.

It’s important to recognize, though, that the historical data you are using does
not encapsulate the "true distribution" of temperatures; it serves only as an
approximation. If certain temperature values are absent from historical records,
this does not imply that their probabilities are zero. Those values may simply
be missing from the data collection, highlighting the limitations of your dataset.
Thus, while your estimate provides useful insights, it is essential to approach it
with caution, acknowledging that the actual distribution may di!er.
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Example 2.4 (Stock returns). Suppose you’re considering investing in the stock
market and want to identify which stock might yield the greatest return. Pre-
dicting stock returns is notoriously challenging; if it were easy, everyone would
be wealthy. However, this doesn’t mean we cannot make informed decisions.
The financial market operates as an information marketplace — having more
information gives you a competitive edge.

If you had perfect information about who would buy or sell which stock at
specific times, you could potentially predict price movements with high accuracy.
Unfortunately, in reality, we often face uncertainty. To navigate this uncertainty,
we can model stock returns as random variables. For instance, let Xj represent
the monthly return of stock j. By collecting and analyzing the distribution
of Xj over the past few years, we can gain insights into the stock’s historical
performance.

However, relying solely on past returns to guide investment decisions is not a
good strategy. One major reason is that historical performance does not guaran-
tee future outcomes. Market conditions, company performance, and economic
factors can change dramatically, making past returns an unreliable predictor.

In this example, we highlight random variable as a technique to model uncer-
tainty, and also acknowledge the limitation of statistics. Statistics may or may
not be useful without an understanding of the subject matter.

Summary. Let’s summarize what we’ve covered regarding random variables.

1. A random variable serves as a numerical representation of a specific aspect
of an experiment or a random phenomenon. It allows us to quantify outcomes
in a meaningful way, enabling analysis and interpretation of the results. For
example, in a coin toss, we might define a random variable to represent the
number of heads observed in a series of flips.

2. We typically model situations as random variables because we often lack suf-
ficient information to draw definitive conclusions. In these instances, probability
provides a framework for making educated guesses about uncertain outcomes.
It acts as a compromise, allowing us to express our uncertainty mathematically
and make decisions based on incomplete information. This is particularly use-
ful in fields like finance, economics, and social sciences, where uncertainties are
inherent.
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3. Generally, we do not have access to the true distribution of a random variable,
which is why we rely on finite samples, often derived from historical records,
to approximate this distribution. By analyzing past data, we can estimate the
probabilities associated with di!erent outcomes. However, it’s important to note
that these approximations are subject to sampling variability and may not cap-
ture the entire complexity of the underlying phenomenon. Thus, understanding
the limitations of our data and the potential for biases is crucial when making
inferences based on random variables.

2.4 Bernoulli distribution

We introduce some “named distributions” from now on. These distributions
are named because they provide standardized models for common “patterns” of
random processes.

Definition 2.8. A random variable X is said to have the Bernoulli distribu-
tion, denoted as X≃ Bern(p), if X has only two possible values, 0 and 1, and
P (X = 1) = p, P (X = 0) = 1→ p.

The PMF of a Bernoulli random variable X is given by

pX(x) =





p if x = 1,

1→ p if x = 0.

This can also be expressed as

pX(x) = p
x(1→ p)1↑x for x ↑ {0, 1} .

Example 2.5. Flip a coin once. Let X be the number of heads up. Then
X ≃ Bern(p). If the coin is fair, we have p = 0.5.

The Bernoulli distribution is widely used because it provides a simple yet pow-
erful framework for modeling binary outcomes, where events can be classified
as success or failure (Bernoulli trial). This versatility allows it to be applied
across a wide range of fields and scenarios.

One key reason for its popularity is that many real-world phenomena can be
distilled into binary outcomes. For instance, in quality control, a product can
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either pass or fail inspection; in healthcare, a treatment may either be e!ective
or ine!ective; and in marketing, a consumer may either purchase a product
or not. Because nearly any situation involving two possible outcomes can be
framed in terms of success and failure, the Bernoulli distribution becomes a
natural choice for analysis.

Usually, we apply an indicator variable for binary outcomes. An indicator
variable assigns a value of 1 to represent the occurrence of a specific event
(success) and a value of 0 to indicate that the event did not happen (failure).
This binary representation allows us to convert any event into a random variable,
which can then be analyzed with Berboulli distribution.

Bernoulli distribution serves as the foundation for more complex models, such
as the binomial distribution, which deals with multiple independent trials. This
hierarchical structure makes it easier to build upon and develop more sophisti-
cated statistical methods. Its simplicity also facilitates calculations and inter-
pretations, making it accessible for researchers and practitioners alike.

2.5 Binomial distribution

Definition 2.9. Suppose X1, X2, . . . , Xn are independent and identical Bern(p)
distributions. Let X be the total number of successes of the n independent trials.
That is, X = X1 +X2 + · · · +Xn. Then X has the Binomial distribution,
X ≃ Bin(n, p).

The probability mass function of X directly follows from the combination theory:

pX(k) = P (X = k) =

(
n

k

)
p
k(1→ p)n↑k

.

This is a valid PMF because, by the Binomial theorem, we have

n∑

k=0

pX(k) =
n∑

k=0

(
n

k

)
p
k(1→ p)n↑k = (p+ (1→ p))n = 1.

Example 2.6. In the previous example of tossing two coins, we compute the
distribution of X by counting the equally likely outcomes in an event. We can
get the same result by realizing it is a Binomial distribution. X ≃ Bin(2, 1/2).
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Since each coin tossing is an independent Bernoulli trial. The probabilities come
directly from the PMF.

P (X = 0) = pX(0) =

(
2

0

)(
1

2

)0 (1

2

)2

=
1

4
;

P (X = 1) = pX(1) =

(
2

1

)(
1

2

)1 (1

2

)1

=
1

2
;

P (X = 2) = pX(2) =

(
2

2

)(
1

2

)2 (1

2

)0

=
1

4
.

Utilizing the Binomial distribution also allows us to generalize the problem.
Suppose we are tossing n coins, we want to find the probability of getting k

heads. It is almost impossible to count all the possible outcomes, but the answer
immediately follows from the Binomial PMF.

Example 2.7. The Binomial distribution is often used to model the probability
that a certain number of “successes” occur during a certain number of trials.
Here is an example. Suppose it is known that 5% of adults who take a certain
medication experience negative side e!ects. We want to find the probability
that a certain number of patients in a random sample of 100 will experience
negative side e!ects. Let X be the number patients that experience negative
side e!ects, it follows that X ≃ Bin(100, 0.05).

Example 2.8. Let X ≃ Bin(n, p) and Y ≃ Bin(m, p) be two independent
Binomail random variables. Show that X + Y ≃ Bin(n+m, p).

Proof. By the definition of the Binomial distribution, X is the number of suc-
cesses in n independent trials, and Y is the number of successes in m independent
trials. Therefore, X+Y is the number of successes in n+m independent trials,
which is exactly Bin(n+m, p).

We can also prove it using indicator variables. X =
∑n

i=1 Xi where Xi ≃
Bern(p); Y =

∑m
j=1 Yj where Yj ≃ Bern(p). Therefore, X + Y =

∑n
i=1 Xi +∑m

j=1 Yj =
∑n+m

k=1 Zk. Since Xi and Yj are identical Bernoulli random variables,
Zk = Xk for k = 1, . . . , n; Zk = Yk↑n for k = n+ 1, . . . , n+m.
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Another way is to leverage the PMF:

P (X + Y = k) =
∑

i+j=k

P (X = i)P (Y = j)

=
∑

i+j=k

(
n

i

)
p
i(1→ p)n↑i

(
m

j

)
p
j(1→ p)m↑j

=
∑

i+j=k

(
n

i

)(
m

j

)
p
i+j(1→ p)m+n↑i↑j

= p
k(1→ p)m+n↑k

k∑

i=0

(
n

i

)(
m

k → i

)

= p
k(1→ p)m+n↑k

(
n+m

k

)
.

The last step:
(n+m

k

)
=

∑k
i=0

(n
i

)( m
k↑i

)
is known as the Vandermonde’s identity.

Example 2.9. Let’s explore an example that appears to be Binomial but is, in
fact, not a Binomial distribution. Given a 5-card hand. Find the distribution
of the number of aces.

Solution. Let X be the number of aces. It is tempting to say X ≃ Bin(5, p).
But this not correct. Because having one ace is NOT independent from having
another ace. We need to use the classical approach:

P (X = k) =
C

k
4C

5↑k
48

C
5
52

.

This example leads to a named distribution that is closed related to Binomial
— Hypergeometric distribution.

2.6 Hypergeometric distribution

Suppose we have a box filled with w white and b black balls. We draw n balls
out of the box with replacement. Let X be the number of white balls. Then
X ≃ Bin(n,w/(w + b)). Since the draws are independent Bernoulli trials, each
with probability w/(w+b) of success. If we instead sample without replacement,
then the number of white balls follows a Hypergeometric distribution. We
denote this by X ≃ HGeom(w, b, n).
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Theorem 2.2. If X ≃ HGeom(w, b, n), then the PMF of X is

pX(k) =

(w
k

)( b
n↑k

)
(w+b

n

) ,

for integers k satisfying 0 ↔ k ↔ w and 0 ↔ n→k ↔ b, and pX(k) = 0 otherwise.

Example 2.10. Let’s redo the ace-card exercise with Hypergeometric distribu-
tion. In a 5-card hand, the number of aces in the hand has the HGeom(4, 48, 5)

distribution, which can be seen by thinking of the aces as white balls and
the non-aces as black balls. The probability of having exactly three aces is
(44)(

48
2 )

(525 )
= 0.0017%.

The Binomial and Hypergeometric distributions are often confused. Both are
discrete distributions taking on integer values between 0 and n for some n, and
both can be interpreted as the number of successes in n Bernoulli trials. How-
ever, a crucial part of the Binomial story is that the Bernoulli trials involved are
independent. The Bernoulli trials in the Hypergeometric story are dependent,
since the sampling is done without replacement.

2.7 Uniform distribution

Definition 2.10. Let a ↔ b be integers. Suppose that the value of a random
variable X is equally likely to be each of the integers a, . . . , b. Then we say that
X has the discrete uniform distribution on the integers a, . . . , b. We denote
it as X ≃ DUnif(a, . . . , b).

The PMF of X ≃ DUnif(a, . . . , b) is given by

p(x) =






1
b↑a+1 for x = a, . . . , b

0 otherwise
.

Example 2.11. Let X be a random number from 1,2,...,100. Then X ≃
DUnif(1, ..., 100). And P (X = k) = 1/100 for any k = 1, ..., 100.

The uniform distribution can be defined in discrete cases, but its continuous
form is more well-known.

Definition 2.11. Let a and b be two real numbers such that a < b. Let X be
a random variable such that a ↔ X ↔ b and, for every subinterval interval of
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[a, b], the probability that X belongs to that subinterval is proportional to the
length of that subinterval. Then we say X has the uniform distribution on
the interval [a, b]. We denote it as X ≃ Unif(a, b).

The PDF of X ≃ Unif(a, b) is given by

f(x) =






1
b↑a for a ↔ x ↔ b

0 otherwise
.

We verify this is a valid PDF because

∫ b

a
f(x)dx =

∫ b

a

1

b→ a
dx =

1

b→ a

∫ b

a
dx = 1;

or the area of the rectangle surrounded by x = a, x = b and f(x) = 1
b↑a is 1.

2.8 Functions of random variables

Functions of random variables are also random variables. If X is a random
variable, then X

2, eX and sin(X) are also random variables.

Definition 2.12. For an experiment with sample space S, a random variable
X, and a function g : R ↗ R. g(X) is the random variable that maps s to
g(X(s)) for all s ↑ S.

Theorem 2.3. Let X be a discrete random variable and g : R ↗ R. If g(X)

is a one-to-one function. Then the support of g(X) is the set of all y such that

x = g
↑1(y) is in the support of X. The PMF of g(X) is

P (g(X) = y) = P (g(X) = g(x)) = P (X = x).

Theorem 2.4. Let X be a discrete random variable and g : R ↗ R. Then the

support of g(X) is the set of all y such that g(x) = y for at least one x in the

support of X. The PMF of g(X) is

P (g(X) = y) =
∑

x:g(x)=y

P (X = x).

Example 2.12. Let X be a discrete random variable with pX(k) = 1
5 for

k = →1, 0, 1, 2, 3. Let Y = 2|X|. Find the range and PMF of Y .
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Definition 2.13. Give an experiment with sample space S, if X,Y are random
variables that map s ↑ S to X(s) and Y (s), then g(X,Y ) is the random variable
that maps s to g(X(s), Y (s)) for all s ↑ S.

Example 2.13. We roll two fair 6-sided dice. Let X be the number on the
first die, and Y be the number on the second die. Find the distribution of
max(X,Y ).

Solution: We just show how to compute one case in the distribution, other cases
are similar.

P (max(X,Y ) = 5) = P (X = 5, Y ↔ 4) + P (X ↔ 4, Y = 5) + P (X = 5, Y = 5)

= 2P (X = 5, Y ↔ 4) + 1/36

= 2(4/36) + 1/36 = 9/36.

2.9 Independence of random variables

Definition 2.14. Random variables X and Y are independent if

P (X ↔ x, Y ↔ y) = P (X ↔ x)P (Y ↔ y)

for all x, y ↑ R.

In the discrete case, this is equivalent to the condition

P (X = x, Y = y) = P (X = x)P (Y = y)

for all possible values of x, y.

Example 2.14. Rolling two fair dice, X is the number on the first die, Y is
the number on the second die, then X + Y is not independent of X → Y .

Solution: It su"ces to show one counter-example that does not follow the mul-
tiplication rule.

P (X + Y = 12, X → Y = 1) = 0

since this is not possible. However,

P (X + Y = 12)P (X → Y = 1) =
1

36
⇐ 5

36
.
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Definition 2.15. Random variables X1, . . . , Xn are independent if

P (X1 ↔ x1, . . . , Xn ↔ xn) = P (X1 ↔ x1) · · ·P (Xn ↔ xn)

for all x1, . . . , xn ↑ R.

Comparing this to the criteria for independence for n events, in which we require
independence to hold for every pair, triplet, quadruplet and so on. It might look
strange at first this only requires one condition. But in fact, this is equally, if
not more, demanding as the criteria for events. As we require this to hold for
all values of x1, . . . , xn. This entails pairwise independence, as we can rule out
irrelevant variables by setting it to infinity:

P (X1 ↔ x1, X2 ↔ x2, X3 ↔ ↘, . . . ) = P (X1 ↔ x1)P (X2 ↔ x2)

since P (Xi ↔ ↘) = 1.

Theorem 2.5. If X and Y are independent, then any function of X is inde-

pendent of any function of Y .

Definition 2.16. If a given number of random variables are independent and
have the same distribution, we call them independent and identically dis-
tributed, or i.i.d for short.

• Independent and identically distributed (X,Y independent die rolls)

• Independent and not identically distributed (X: die roll; Y : coin flip)

• Dependent and identically distributed (X: number of Heads; Y : number
of Tails)

• Dependent and not identically distributed (X: economic growth; Y : pres-
idential election)

Definition 2.17. Random variables X and Y are conditionally independent
given Z if

P (X ↔ x, Y ↔ y|Z = z) = P (X ↔ x|Z = z)P (Y ↔ y|Z = z)

for all x, y ↑ R and all z in the support of Z.
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For discrete random variables, the equivalent definition is to require

P (X = x, Y = y|Z = z) = P (X = x|Z = z)P (Y = y|Z = z).

Definition 2.18. For any discrete random variable X and Z, the function of x
for a fixed z:

pX|Z(x|z) = P (X = x|Z = z)

is called the conditional PMF of X given Z = z.

Application: seller ratings*

This example involves multiple types of discrete distributions. The technique
used to solve this problem aligns with Bayesian inference, which is beyond the
scope of this course. However, it remains an interesting case. The procedure
illustrates the process of statistical modeling: we begin with an assumption
and a proposed statistical model, then update it with new data. Finally, we
draw inferences based on the model, typically addressing the question we aim
to answer. You are not required to understand everything in this example.
Nonetheless, it helps to develop a mindset of statistical inference early in the
study.

Suppose you are shopping a product online. There are three sellers with the
following ratings:

• Seller 1: 100% positive out of 10 reviews

• Seller 2: 96% positive out of 50 reviews

• Seller 3: 93% positive out of 200 reviews

Which seller is likely to give the best service?

The problem is intriguing because it is obvious that higher ratings do not nec-
essarily means higher satisfaction. We have to weight in the number of reviews.
The more reviews, the more trustworthy the ratings are. Let X(i)

j be a random
variable that means consumer j is satisfied with seller i, where i ↑ {1, 2, 3}.
Assume X

(i)
j follows a Bernoulli distribution:



CHAPTER 2. RANDOM VARIABLES 42

X
(i)
j =





1 satisfaction with probability ωi

0 otherwise

where ωi is an unknown parameter of seller i that captures their “genuine” satis-
faction rate. We assume the consumers independently write their ratings. The
overall positive rate of seller i is therefore Ri =

1
ni

∑
j X

(i)
j where ni is the total

number of reviews. We want to infer the value of ωi from their observed positive
rate Ri. From now on we drop the seller index i to simply the notation since it
is symmetric for all sellers.

Because we have no prior knowledge about ω. We assume that ω takes any value
from [0, 1] equally likely, i.e. ω ≃ Unif(0, 1). Assuming each Xj is independent
and identical, then

S = X1 +X2 + · · ·+Xn

follows the Binomial distribution with PMF:

p(k|ω) =
(
n

k

)
ω
k(1→ ω)n↑k

Our goal is to find: p(ω|k). Recall that the Bayes’ rule allows us to invert the
conditional probability:

p(ω|k) = p(k|ω)p(ω)
p(k)

=
p(k|ω)p(ω)∫→

↑→ p(k|ω)p(ω)dω

Since ω ≃ Unif(0, 1), we have

p(ω) =





1 if ω ↑ [0, 1]

0 otherwise

We now focus on ω ↑ [0, 1], since the probability is 0 otherwise. Substitute in
the PMF of the Binomial distribution,

p(ω|k) =
(n
k

)
ω
k(1→ ω)n↑k

∫ 1
0

(n
k

)
ωk(1→ ω)n↑kdω
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The hard part is to evaluate the integral. We state without proof (this is known
as the Beta function, which we will prove in later chapters):

∫ 1

0
ω
k(1→ ω)n↑k =

k!(n→ k)!

(n+ 1)!

Therefore,

p(ω|k) = (n+ 1)!

k!(n→ k)!
ω
k(1→ ω)n↑k

Now suppose you are the next customer. The probability that you would be
satisfied is

P (Xn+1 = 1|S = k) =

∫ 1

0
P (xn+1 = 1|ω)p(ω|k)dω

=

∫ 1

0
ω ⇐ (n+ 1)!

k!(n→ k)!
ω
k(1→ ω)n↑k

dω

=
(n+ 1)!

k!(n→ k)!

∫ 1

0
ω
k+1(1→ ω)(n+1)↑(k+1)

dω

=
(n+ 1)!

k!(n→ k)!
⇐ (k + 1)!(n→ k)!

(n+ 2)!

=
k + 1

n+ 2
.

Now we substitute the ratings for the three sellers:

• Seller 1: n = 10, k = 10

• Seller 2: n = 50, k = 48

• Seller 3: n = 200, k = 186

The probabilities that you would be satisfied with each seller are: 92%, 94%,
93%. The result is known as the Laplace’s rule of succession. The rule of
thumb is, pretending we have too more reviews: one is positive, the other is
negative. Compute the satisfaction rate as k+1

n+2 .
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How to choose a distribution?

The fact is, we never know the “true” distribution of a real-world problem. When
building a probability model, the distribution is typically assumed based on the
nature of the data and the problem at hand. This assumption is crucial be-
cause the probability distribution determines how the random variable behaves,
including its likelihood of taking specific values. Typically, this process involves:

1. Choosing the distribution: Based on the characteristics of the real-world
situation or data, you assume an appropriate probability distribution. For
example, if you’re modeling the number of successes in a fixed number of
independent trials, you might assume a Binomial distribution.

2. Assumptions behind the distribution: Every distribution has underlying
assumptions. For example, a Binomial distribution assumes independent
trials with two possible outcomes (success/failure) and a constant proba-
bility of success.

3. Fitting the model: Once you assume a distribution, you use data to esti-
mate parameters of the distribution (e.g., mean, variance, or rate param-
eters), which allows you to make probabilistic predictions and inferences.

It is important to stress that the data we have collected from real events does
not directly reveal the Data Generating Process (DGP), which is the true
underlying process that produces the data. Instead, when we assume a distri-
bution, we are essentially making a hypothesis about what that DGP might be.
The actual relationship between the assumed distribution and the data is one
of approximation and testing, rather than perfect correspondence.

The assumed distribution is a theoretical model that we believe could explain
the underlying patterns in the data. The data is a finite set of observations,
which is only a sample from the potential infinite population or DGP. The data
is influenced by noise, randomness, and sample size, so it doesn’t always clearly
show the true DGP. When we assume a distribution, we’re making an educated
guess about the DGP based on the nature of the problem, properties of the
data, and sometimes prior knowledge or experience.

Data alone, especially from a finite sample, does not directly tell us what the
DGP is. Instead, we infer the DGP by fitting models to the data and assessing
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how well they describe it. Since data is inherently noisy and finite, di!erent
models may fit the data well, meaning that multiple distributions could seem
plausible based on the data alone. That’s why we use goodness-of-fit tests,
residual analysis, and model comparison to narrow down our choices.

If the data pattern conflicts with the assumed distribution, it might suggest
that the assumption be wrong, and we should revisit our model. However, some
degree of mismatch can be due to sample noise, outliers, or oversimplification,
and may not always mean the assumption is entirely incorrect.

The workflow of probability modeling

The above example is a good illustration of how we do probability modeling.
Here we summarize it into several key steps.

1. Understanding of the problem and data exploration: The typical workflow
of probability modeling begins with a clear understanding of the prob-
lem we are trying to solve. This involves identifying the objective of the
model, determining which quantities or events need to be modeled as ran-
dom variables. This also involves gathering relevant data, if available, or
understanding the kind of data we will be working with.

2. Assumption of probability distribution: Based on the nature of the data
and the problem at hand, choose a candidate distribution. For discrete
data, this could be distributions like Bernoulli or Binomial. For continuous
data, it might be Normal or Uniform distributions.

3. Parameter estimation: The candidate distribution usually involves un-
known parameters. In most of the applications, we are interested in esti-
mating these parameters. In our example, we update the parameter with
the Bayes’ rule. But there are other estimation methods available, such as
Maximum Likelihood Estimation (MLE). Estimation quantifies the model
and provides specific estimates based on the data.

4. Model fit and evaluation: We skip this step in our example. But normally,
we need to evaluate how well the assumed distribution fits the data. This
involves performing goodness-of-fit tests or graphical diagnostics. If the
assumed distribution doesn’t fit the data well, the model might need to
be refined.
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5. Simulation or inference: After refining the model, we can run simulations
or make inferences. If the model is meant to simulate real-world processes,
we can now generate new data based on the probability distribution and
its parameters. We may also use the model to predict future outcomes or
estimate probabilities of specific events.


