
Chapter 3

Expectation

3.1 Expectation

Definition 3.1. Let X be a discrete random variable. The expectation of X,
denoted by E(X), is defined as:

E(X) =
∑

all x

xP (X = x).

The expectation of X is also referred to as the mean of X or the expected
value of X.

In other words, the expected value of X is a weighted average of the possible
values that X can take on, weighted by their probabilities. If the values are of
equal probability, expectation is the simple average of all x: E(X) = 1

n

∑
x.

The expected value of X is a number (if it exists), E(X) → R. It is not a random
variable such as a function of X.

Sometimes, we would like to omit the parentheses for simplicity and write EX ↑
E(X). We also like to denote expectation by the greek letter µ ↑ E(X).

Example 3.1. The expectation of a Bernoulli random variable X ↓ Bern(p):

E(X) = 1↔ P (X = 1) + 0↔ P (X = 0) = p.
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Example 3.2. The expectation of a Binomial random variable X ↓ Bin(n, p):

E(X) =
n∑

k=0

kp(k)

=
n∑

k=0

k ·
(
n

k

)
p
k
q
n→k

=
n∑

k=1

n ·
(
n↗ 1

k ↗ 1

)
p
k
q
n→k

=np

n∑

k=1

(
n↗ 1

k ↗ 1

)
p
k→1

q
n→k

=np

n→1∑

j=0

(
n↗ 1

j

)
p
j
q
n→1→j

︸ ︷︷ ︸
another Binomial PMF

=np.

Example 3.3. Life expectancy is the average number of years a person is ex-
pected to live. It is a crucial indicator of the quality of living and one of the
three components of the Human Development Index (HDI) (the other two com-
ponents are education and per capita GDP). Here is a toy example to compute
life expectancy with hypothetical data.1

(1)

Age

(2)

Population

(3)

Mortality

rates

(4)

# Survive

(5)

# Died at

age

(6)

P(Age)

0 200 1% 1000 10 1%
20 300 2% 990 =1000(1-1%) 20 2%
40 250 10% 970 =990(1-2%) 97 10%
60 150 20% 873 =970(1-10%) 175 17%
80 100 100% 699 =873(1-20%) 699 70%

Total 1000

Table 3.1: Hypothetical mortality rates and life table

To simplify our analysis, we will assume there are only five possible ages: 0,
20, 40, 60, and 80. A baby is born at age 0, and can either die at that age or

1
This is an overly simplified example that only serves to clarify the definition of expectation.

See this tutorial from MEASURE Evaluation for the actual computation of life expectancy.
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survive to age 20. We intentionally exclude intermediate ages such as 5 and 10
for the sake of computational simplicity.

It’s important to note that life expectancy is not the same as the average age
of the population. For instance, based on the hypothetical data presented, the
average age can be calculated as:

Age = (0↔ 200 + 20↔ 300 + 40↔ 250 + 60↔ 150 + 80↔ 100)/1000 = 33.

However, the expected age, denoted as E(Age), is defined as:

E(Age) =
∑

Age ↔ P (Age).

To compute this expected value, we need to determine P (Age), the probability
of living to a specific age or dying at that age. This requires consideration of
the mortality rate at each age, which is given in Column 3.

Assuming 1000 babies are born at age 0, with a mortality rate of 1% at that
age, we find that 99% of the babies survive to age 20. Thus, the number of
babies that survive to age 20 is: 1000↔ (1↗ 1%) = 990. We can apply similar
calculations to determine the number of survivors at each subsequent age.

The number of individuals who die at a specific age (Column 5) is the dif-
ference between the number of survivors at that age and the next (Column
4). To find the probability of living to a specific age, we compute: P (Age) =
Column 4/1000.

Finally, we compute the expected value of age (or life expectancy) as follows:

E(Age) = 0↔ 1% + 20↔ 2% + 40↔ 10% + 60↔ 17% + 80↔ 70% = 70.6.

This figure di!ers from the average age. Since the mortality rate is low at
younger ages, the probabilities P (Age) for these ages are also low, while they
are higher for older ages. This example illustrates the distinction between av-
erage and expected values. In everyday conversation, we may use these terms
interchangeably, but in certain contexts, expected values can significantly di!er
from averages.
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3.2 Linearity of expectation

Theorem 3.1. For any random variables X,Y and any constant c,

E(X + Y ) = E(X) + E(Y ),

E(cX) = cE(X).

This property holds regardless of the dependencies between the random variables.

Proof. The proof is not as straightforward as it seems. It is hard to combine
the two random variables:

E(X)+E(Y ) =
∑

x

xP (X = x)+
∑

y

yP (Y = y)
?
=

∑
(x+y)P (X+Y = x+y).

The problem becomes easier if the number of possible values of X and Y are
the same and all values are equally likely,

E(X) + E(Y ) =
1

n

∑
x+

1

n

∑
y =

1

n

∑
(x+ y) = E(X + Y ).

The original problem is equivalent to the simple case if realizing that the weighted
average is jut a simple average with repetitive values. For example,

1↔ 1

4
+ 2↔ 2

4
+ 3↔ 1

4
=

1

4
(1 + 2 + 2 + 3).

Imagine the sample space as being composed of “atom” outcomes {ω}, each with
equal probability P (ω). All random variable are function of these atoms, X(ω),
and Y (ω). Therefore, the expectation formula can be rewritten as

E(X)+E(Y ) =
∑

ω

X(ω)P (ω)+
∑

ω

Y (ω)P (ω) =
∑

ω

(X+Y )(ω)P (ω) = E(X+Y ).
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Here is another way to prove linearity for discrete random variables:

E(X + Y ) =
∑

z=x+y

zP (X + Y = z)

E(X + Y ) =
∑

x

∑

y

(x+ y)P (X = x, Y = y)

=
∑

x

∑

y

xP (X = x, Y = y) +
∑

x

∑

y

yP (X = x, Y = y)

=
∑

x

x

∑

y

P (X = x, Y = y) +
∑

y

y

∑

x

P (X = x, Y = y)

=
∑

x

xP ((X = x) ↘
⋃

all y

(Y = y)) +
∑

y

yP (
⋃

all x

(X = x) ↘ (Y = y))

=
∑

x

xP (X = x) +
∑

y

yP (Y = y)

= E(X) + E(Y ).

Corollary 3.1. Further properties on the linearity of expectations:

• If Y = aX + b, then E(Y ) = aE(X) + b.

• E(X1 + · · ·+Xn) = E(X1) + · · ·+ E(Xn)

• E(a1X1 + · · ·+ anXn + b) = a1E(X1) + · · ·+ anE(Xn) + b

Example 3.4. Redo the expectation of X ↓ Bin(n, p) with properties of ex-
pectation:

E(X) = E(X1 + · · ·+Xn) = nE(Xi) = np

where Xi ↓ Bern(p).

Example 3.5. Let X ↓ HGeom(w, b, n). Find E(X) the expected number of
white balls. Similarly, we can decompose X:

X = I1 + · · ·+ In

where Ij equals 1 if the jth ball is white and 0 otherwise. We have said that
{Ij} are not independent, but the property of linearity still holds:

E(X) = E(I1 + · · ·+ In) = E(I1) + · · ·+ E(In).
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Meanwhile we have

E(Ij) = P (j-th ball is white) =
w

w + b

since unconditionally the jth ball is equally likely to be any of the balls. Thus,
E(X) = nw

w+b .

Example 3.6. In a group of n people, what is the expected number of distinct
birthdays among the n people (the expected number of days on which at least
one of the people was born)? What is the expected number of people sharing a
birthday (any day)?

Solution: Let X be the number of distinct birthdays, and write X = I1 + · · ·+
I365, where

Ij =





1 if someone was born on day j

0 otherwise
.

Then

E(Ij) = P (someone was born on day j)

= 1↗ P (no one was born on day j)

= 1↗
(
364

365

)n

.

Then by linearity,

E(X) = 365

(
1↗

(
364

365

)n)
.

Let Y be the number of people sharing a birthday, and Y = J1+ · · ·+Jn where
Jk is an indicator that the j-th person shares his birthday with somebody else.

E(Jk) = P (someone shares birthday with k)

= 1↗ P (no one shares birthday with k)

= 1↗
(
364

365

)n→1

.

Therefore,

E(Y ) =
n∑

k=1

E(Jk) = n

(
1↗

(
364

365

)n→1
)
.

For some numeric values, E(Y ) = 2.3 if n = 30; E(Y ) = 6.3 if n = 50.
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Example 3.7. Suppose that there are n people sitting in a classroom with
exactly n seats. At some point, everyone got up, ran around the room, and sat
back down randomly (i.e., all seating arrangements are equally likely). What is
the expected value of the number of people sitting in their original seat?

Solution: Number the people from 1 to n. Let Xi be the Bernoulli random
variable with value 1 if person i returns to their original seat and value 0 oth-
erwise. Since person i is equally likely to sit back down in any of the n seats,
the probability that person i returns to their original seat is 1/n. Therefore
E[Xi] = 1/n. Now, let X be the number of people sitting in their original seat
following the rearrangement. Then X = X1 + X2 + · · · + Xn. By linearity of
expected values, we have E[X] =

∑
E[Xi] =

∑
1/n = 1.

Example 3.8. Let ! be a permutation over {1, 2, . . . , n}. That is a reordering
of the numbers. A fixed point of a permutation are the points not moved by
the permutation. For example, in the permutation below

1 2 3 4

! 2 4 3 1

The fixed point is 3. Find the expected number of fixed points of a random
permutation.

Solution: Let X be the number of fixed points of a random permutation. Then
X =

∑n
k=1 1!(k)=k where 1!(k)=k indicates the k-th number stays the same

after the permutation. By linearity,

E(X) = E

(
n∑

k=1

1!(k)=k

)
=

n∑

k=1

E
(
1!(k)=k


=

n∑

k=1

1

n
= 1.

Example 3.9 (Bu!on’s needle). Rule a surface with parallel lines a distance d

apart. What is the probability that a randomly dropped needle of length l ≃ d

crosses a line?

Solution: Consider dropping any (continuous) curve of length l onto the surface.
Imagine dividing up the curve into N straight line segments, each of length l

N .
Let Xi be the indicator for the i-th segment crossing a line. Let X be the total
number of times the curve crosses a line. Then,

E(X) = E(
∑

Xi) =
∑

E(Xi) = N · E(Xi).
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There could be infinitely many segments. It is hard to compute this expectation
directly. But here we arrive an important Lemma: the expected number of
crossings is proportional to the length of the curve, regardless of the shape of
the curve. If we can compute E(X) for some curve, the we can compute E(X)

for any length by scaling the value proportional to the length.

Consider a circle of diameter d. The circle always crosses the lines twice for
sure. That is, E(Xcircle) = 2. The length of the circle is εd. Therefore, the
value of E(X) for any curve of length l is given by

E(X) =
2l

εd
.

Now a needle can cross a line either 1 or 0 times. Thus, E(X) = 1 · P (X =

1) + 0 · P (X = 0) is exactly the probability of a needle crossing a line.

Remark. This amazing example can be used to approximate the value of ε. Let
q be the probability of a needle crossing a line. q can be approximated by large
number of simulations. Then ε ⇐ 2l

qd .

3.3 Multiplication and LOTUS

Theorem 3.2. If X and Y are independent, we have

E(XY ) = E(X)E(Y ).

In general, if X1, . . . , Xn are independent, we have

E(X1X2 · · ·Xn) = E(X1)E(X2) · · ·E(Xn).

Remark. The multiplication rule will not hold without independence.
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Proof. For discrete and independent X,Y ,

E(XY ) =
∑

x

∑

y

xyP (X = x, Y = y)

=
∑

x

∑

y

xyP (X = x)P (Y = y) if independent

=
∑

x

xP (X = x)
∑

y

yP (Y = y)

= E(X)E(Y ).

Remark. This is a su"cient but not necessary condition. E(XY ) = E(X)E(Y )

does not imply independence. Consider a counter-example,

X =





1 with prob. 1/2

0 with prob. 1/2
, Z =





1 with prob. 1/2

↗1 with prob. 1/2
;

Then

Y = XZ =






↗1 with prob. 1/4

0 with prob. 1/2

1 with prob. 1/4

.

We have E(X) = 1/2, E(Y ) = 0, E(XY ) = 0. So E(XY ) = E(X)E(Y ). But
clearly X,Y are not independent.

Theorem 3.3 (Law of the unconscious statistician (LOTUS)). Let X be a

random variable, and g be a real-valued function of a real variable. If X has a

discrete distribution, then

E[g(X)] =
∑

all x

g(x)P (X = x).

LOTUS says we can compute the expectation of g(X) without knowing the
PMF of g(X).

Proof. The idea is similar to the one we use to prove linearity. Imagine our
sample space is composed of “atoms”, and X(ω) maps some atoms to numbers.
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The expectation of g(X) can be rewritten as

E[g(X)] =
∑

ω

g(X(ω))P (ω).

If we group the atoms that compose the event X = x together,

E[g(X)] =
∑

x

∑

ω:X(ω)=x

g(X(ω))P (ω)

=
∑

x

g(x)
∑

ω:X(ω)=x

P (ω)

=
∑

x

g(x)P (X = x).

Example 3.10. Compute E(X) and E(X2) given the following distribution.

X 0 1 2
X

2 0 1 4
P 1/4 1/2 1/4

Solution: According to the distribution table, we compute the expectations as

E(X) = 0↔ 1/4 + 1↔ 1/2 + 2↔ 1/4 = 1;

E(X2) = 0↔ 1/4 + 1↔ 1/2 + 4↔ 1/4 = 3/2.

Note that E(X2) ⇒= [E(X)]2.

Remark. In general, E[g(X)] ⇒= g(E(X)). Linearity implies that if g is a linear
function of X, then E[g(X)] = g(E(X)). For a nonlinear function g, the rela-
tionship between E[g(X)] and g(E(X)) is determined case by case. We will get
back to this point when we learn Jensen’s inequality.

Example 3.11 (St. Petersburg Paradox). Flip a fair coin over and over again
until the head lands the first time. You will win 2k dollars if the head lands in
the k-th trial (including the successful trial). What is the expected payo! of
this game?

Solution: Let X = 2k. We want to find E(X). The probability of the first head



CHAPTER 3. EXPECTATION 57

showing up in the k-th trial is 1
2k . Therefore,

E(X) =
↑∑

k=1

2k · 1

2k
=

↑∑

k=1

1 = ⇑

The expected payo! is infinitely high! This is against most people’s intuition.
This is because we intuitively think that E(X) = E(2k) = 2E(k), which is a
finite number.

3.4 Median and mode

The mean is called a measure of central tendency because it tells us something
about the center of a distribution, specifically its center of mass. Other measures
of central tendency that are commonly used in statistics are the median and the
mode, which we now define.

Definition 3.2. We say that c is a median of a random variable X if P (X ≃
c) ⇓ 1/2 and P (X ⇓ c) ⇓ 1/2.

Definition 3.3. For a discrete random variable X, we say that c is a mode of
X if it maximizes the PMF: P (X = c) ⇓ P (X = x) for all x. For a continuous
random variable X with PDF f , we say that c is a mode if it maximizes the
PDF: f(c) ⇓ f(x) for all x.

Intuitively, the median is a value c such that half the mass of the distribution
falls on either side of c (or as close to half as possible, for discrete random
variables), and the mode is a value that has the greatest mass or density out of
all values in the support of X. If the CDF F is a continuous, strictly increasing
function, then F

→1(1/2) is the median (and is unique).

Remark. A distribution can have multiple medians and multiple modes. Medi-
ans have to occur side by side; modes can occur all over the distribution.

Example 3.12. The main reason why the median is sometimes preferred over
the mean is that the median is more robust to extreme values. Think about an
income distribution. Higher incomes are rare, but their absolute values are high.
Thus, the mean income tends be higher than what the mass of the population
would earn. But the median is more robust to extreme values and is closer to
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the earnings of an “average” person. For example, the mean of China’s income
is ↭2, 561 monthly in 2019; the median is only ↭2, 210.

Income (monthly, yuan) <1k 1-2k 2-5k 5-10k 10-20k >20k
Population (million) 550 420 360 63 7.8 0.7

Table 3.2: China monthly income per capita. Source: NBS 2019.

Theorem 3.4. Let X be an random variable with mean µ , and let m be a

median of X.

• The value of c that minimizes the mean squared error E (X ↗ c)2 is c = µ.

• A value of c that minimizes the mean absolute error E |X ↗ c| is c = m.

3.5 Variance and covariance

Variance and standard deviation

Expectation is the most commonly used summary of a distribution, as it indi-
cates where values are likely centered. However, it provides limited insight into
the distribution’s overall shape. For example, two random variables might have
the same mean, yet one could have values spread far from the mean while the
other has values tightly clustered around it. Variance, on the other hand, de-
scribes how far values in a distribution typically deviate from the mean, o!ering
a measure of the distribution’s dispersion.

Definition 3.4. The variance of a random variable X is defined as

V ar(X) = E (X ↗ EX)2 .

The standard deviation of X is defined as

SD(X) =


V ar(X).

We often denote standard deviation by the greek letter ϑ ↑ SD(X), and vari-
ance by ϑ

2.
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Variance measures how far X typically deviates from its mean, but instead of
averaging the di!erences, we average the squared di!erences to ensure both
positive and negative deviations contribute. The expected deviation, E(X ↗
E(X)), is always zero, so squaring avoids this cancellation. Since variance is in
squared units, we take the square root to get the standard deviation, restoring
the original units.

Why take squares? Sometimes we also use E(|X↗E(X)|) instead. But it is less
common because the absolute value function isn’t di!erentiable. Besides, squar-
ing connects to geometric concepts like the distance formula and Pythagorean
theorem, which have useful statistical meanings.

Theorem 3.5. For any random variable X,

V ar(X) = E(X2)↗ (EX)2.

Proof. Let µ = E(X). By definition,

V ar(X) = E(X ↗ µ)2 = E(X2 ↗ 2µX + µ
2)

= E(X2)↗ 2µE(X) + µ
2 = E(X2)↗ µ

2
.

Example 3.13. Find the variance for X ↓ Bern(p).

V ar(X) = E(X2)↗ E
2(X) = p↗ p

2 = p(1↗ p).

Theorem 3.6. Variance has the following properties:

• V ar(X) ⇓ 0

• V ar(X + c) = V ar(X)

• V ar(cX) = c
2
V ar(X)

• If X,Y are independent, V ar(X + Y ) = V ar(X) + V ar(Y ).

• If X1, X2, . . . , Xn are independent, V ar(
n∑

i=1

Xi) =
n∑

i=1

V ar(Xi).
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Example 3.14. Find the variance for X ↓ Bin(n, p). X = X1+ · · ·+Xn where
Xi are i.i.d Bernoulli distributions

V ar(X)
iid
=

n∑

i=1

V ar(Xi) = np(1↗ p).

Covariance and correlation

For more than one random variable, it is also of interest to know the relationship
between them. Are they dependent? How strong is the dependence? Covariance
and correlation are intended to measure that dependence. But they only capture
a particular type of dependence, namely linear dependence.

Definition 3.5. The covariance between random variables X and Y is defined
as

Cov(X,Y ) = E[(X ↗ EX)(Y ↗ EY )].

The covariance between X and Y reflects how much X and Y simultaneously
deviate from their respective means. If X > EX, Y > EY or X < EX, Y < EY

simultanenously, then Cov(X,Y ) tends be positive. Conversely, if X > EX is
pair with Y < EY (or X < EX paired with Y > EY ), then Cov(X,Y ) tends
to be negative.

Theorem 3.7. For any random variables X and Y ,

Cov(X,Y ) = E(XY )↗ E(X)E(Y ).

Proof. Let µX = E(X) and µY = E(Y ). By definition,

Cov(X,Y ) = E(XY ↗ µXY ↗ µY X + µXµY )

= E(XY )↗ µXE(Y )↗ µY E(X) + µXµY

= E(XY )↗ E(X)E(Y ).

Theorem 3.8. If X,Y are independent, they are uncorrelated. But the converse

is false.
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Proof. Cov(X,Y ) = E(XY ) ↗ E(X)E(Y ). Independence implies E(XY ) =

E(X)E(Y ). Thus, Cov(X,Y ) = 0. But Cov(X,Y ) = 0 does not necessarily
imply independence. Consider the following counter example. Let X be a
random variable that takes three values -1, 0, 1 with equal probability. And
Y = X

2. X and Y are clearly dependent. But they their correlation is 0. Since
E(X) = 0, E(Y ) = 2/3, E(XY ) = E(X3) = 0, Cov(X,Y ) = 0.

Remark. Covariances and correlations provide measures of the extend to which
two random variables are linearly related. If we plot the values of X and Y in the
xy-plane, if the points form a straight line, that would signal a strong positive
(if positive slope) or negative (if negative slope) correlation. It is possible that
the correlation is 0 if X and Y are dependent but the relationship is nonlinear.

Theorem 3.9. Covariance has the following properties:

• Cov(X,X) = V ar(X)

• Cov(X,Y ) = Cov(Y,X)

• Cov(cX, Y ) = Cov(X, cY ) = c [Cov(X,Y )]

• Cov(X + Y, Z) = Cov(X,Z) + Cov(Y, Z)

• V ar(X + Y ) = V ar(X) + V ar(Y ) + 2Cov(X,Y )

• V ar

(
n∑

i=1

Xi

)
=

n∑

i=1

V ar(Xi) + 2
∑

i<j

Cov(Xi, Xj)

Proof. We only prove the variance-covariance property:

V ar(X + Y ) = E[(X + Y ↗ µX ↗ µY )
2]

= E[(X ↗ µX)2 + (Y ↗ µY )
2 + 2(X ↗ µX)(Y ↗ µY )]

= V ar(X) + V ar(Y ) + 2Cov(X,Y ).

Exercise 3.1. Find Cov(X + Y, Z +W ) and V ar(X ↗ Y ).

While Cov(X,Y ) quantifies how X and Y vary together, its magnitude also
depends on the absolute scales of X and Y (multiply X by a constant c, the
covariance will be di!erent). To establish a measure of association between X
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and Y that is una!ected by arbitrary changes in the scales of either variable,
we introduce a “standardized covariance” called correlation.

Definition 3.6. The correlation between random variables X and Y is defined
as

Corr(X,Y ) =
Cov(X,Y )

V ar(X)V ar(Y )
.

We also denote correlation by ϖ ↑ Corr(X,Y ).

Unlike covariance, scaling X or Y has no e!ect on the correlation. We can verify
this:

Corr(cX, Y ) =
Cov(cX, Y )

V ar(cX)V ar(Y )
=

cCov(X,Y )

c


V ar(X)V ar(Y )

= Corr(X,Y ).

Theorem 3.10. For any random variable X and Y ,

↗1 ≃ Corr(X,Y ) ≃ 1.

Proof. Without loss of generality, assume X,Y both have variance 1, since scal-
ing does not change the correlation. Let ϖ = Corr(X,Y ) = Cov(X,Y ). Then

V ar(X + Y ) = V ar(X) + V ar(Y ) + 2Cov(X,Y ) = 2 + 2ϖ ⇓ 0,

V ar(X ↗ Y ) = V ar(X) + V ar(Y )↗ 2Cov(X,Y ) = 2↗ 2ϖ ⇓ 0.

Thus ↗1 ≃ ϖ ≃ 1.

It is said that X and Y are positively correlated if Corr(X,Y ) > 0, that X

and Y are negatively correlated if Corr(X,Y ) < 0, and that X and Y are
uncorrelated if Corr(X,Y ) = 0.

Theorem 3.11. Suppose that X is a random variable and Y = aX+b for some

constants a, b, where a ⇒= 0. If a > 0, then ϖXY = 1. If a < 0, then ϖXY = ↗1.

Proof. If Y = aX+b, then E(Y ) = aE(X)+b. Thus, Y ↗E(Y ) = a(X↗E(X)).
Therefore,

Cov(X,Y ) = aE[(X ↗ EX)2] = aV ar(X).

Since V ar(Y ) = a
2
V ar(X), ϖXY = a

|a| . The theorem thus follows.
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Example 3.15. Toss two coins. Let X be the number of Heads, and Y be the
number of Tails. Find the covariance and correlation between X and Y .

Solution: Note that X and Y are counterparts to each other, Y = 2↗X. So we
expect the correlation be negative. The expectation of X and Y are the same:
EX = EY = 1. So we have X ↗ EX = ↗1, 0, 1 and Y ↗ EY = 1, 0,↗1. The
corresponding probabilities are 1/4,1/2,1/4 respectively. Therefore,

Cov(X,Y ) = (↗1)↔ 1↔ 1/4 + 1↔ (↗1)↔ 1/4 = ↗1/2.

Since V ar(X) = V ar(Y ) = 1/2, the correlation is

Corr(X,Y ) =
Cov(X,Y )

V ar(X)V ar(Y )
=

↗1/2
1/2↔ 1/2

= ↗1.

Example 3.16. Let X ↓ HGeom(w, b, n). Find V ar(X).

Solution: Interpret X as the number of white balls in a sample of size n from an
box with w white and b black balls. We can represent X as the sum of indicator
variables, X = I1 + · · · + In , where Ij is the indicator of the j-th ball in the
sample being white. Each Ij has mean p = w/(w+ b) and variance p(1↗p), but
because the Ij are dependent, we cannot simply add their variances. Instead,

V ar(X) = V ar




n∑

j=1

Ij





= V ar(I1) + · · ·+ V ar(In) + 2
∑

i<j

Cov(Ii, Ij)

= np(1↗ p) + 2

(
n

2

)
Cov(Ii, Ij)

In the last step, because of symmetry, for every pair i and j, Cov(Ii, Ij) are the
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same.

Cov(Ii, Ij) = E(IiIj)↗ E(Ii)E(Ij)

= P (i and j both white)↗ P (i is white)P (j is white)

=
w

w + b
· w ↗ 1

w + b↗ 1
↗ p

2

= p
Np↗ 1

N ↗ 1
↗ p

2

=
p(p↗ 1)

N ↗ 1

where N = w + b. Plugging this into the above formula and simplifying, we
eventually obtain

V ar(X) = np(1↗ p) + n(n↗ 1)
p(p↗ 1)

N ↗ 1
=

N ↗ n

N ↗ 1
np(1↗ p).

This di!ers from the Binomial variance of np(1 ↗ p) by a factor of N→n
N→1 . This

discrepancy arises because the Hypergeometric story involves sampling without
replacement. As N ⇔ ⇑, it becomes extremely unlikely that we would draw the
same ball more than once, so sampling with or without replacement essentially
become the same.

Example 3.17 (PG exam). Put k balls into n boxes. Let X be the number of
empty boxes. Find E(X) and V ar(X).

Solution: Define an indicator variable

Ij =





1 j-th box is empty

0 otherwise

Then X =
∑n

j=1 Ij . Unconditionally, the probability of one box being empty is
(
n→1
n

k. Therefore,

E(Ij) = P (j-th box is empty) =
(
n↗ 1

n

)k

for j = 1, 2, . . . , n. It follows that

E(X) =
n∑

j=1

Ij = nE(Ij) = n

(
n↗ 1

n

)k

.
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To compute the variance,

V ar(X) = V ar(I1 + · · ·+ In) =
n∑

j=1

V ar(Ij) + 2
∑

i<j

Cov(Ii, Ij)

= nV ar(Ij) + 2

(
n

2

)
Cov(Ii, Ij),

since by symmetry, V ar(Ij) is the same for all j and Cov(Ii, Ij) is the same for
all i ⇒= j. It su"ces to compute V ar(Ij) and Cov(Ii, Ij) for any j and i ⇒= j.
Since Ij only takes number 0 and 1,

E(I2j ) =

(
n↗ 1

n

)k

,

V ar(Ij) = E(I2j )↗ (E(Ij))
2 =

(
n↗ 1

n

)k

↗
(
n↗ 1

n

)2k

.

For the covariance term,

E(IiIj) = P (i, j are both empty) =
(
n↗ 2

n

)k

,

Cov(Ii, Ij) = E(IiIj)↗ E(Ii)E(Ij) =

(
n↗ 2

n

)k

↗
(
n↗ 1

n

)2k

.

Therefore,

V ar(X) = n

(
n↗ 1

n

)k

↗
(
n↗ 1

n

)2k

+ 2

(
n

2

)(
n↗ 2

n

)k

↗
(
n↗ 1

n

)2k

.

3.6 Moments and MGF

Definition 3.7. Let X be a random variable with mean µ and variance ϑ
2 .

For any positive integer n, the n-th moment of X is E(Xn), the n-th central
moment is E(X ↗ µ)n, and the n-th standardized moment is E


X→µ
ε

n
.

In accordance with this terminology, E(X) is the first moment of X, V ar(X)

is the second central moment of X. It is natural to ask if there are higher order
moments. The answer is yes.
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Definition 3.8. Let X be a random variable with mean µ, standard deviation
ϑ, and finite third moment. The skewness of X is defined as

Skew(X) = E

(
X ↗ µ

ϑ

)3

.

Definition 3.9. The Kurtosis of X is defined as

Kurt(X) =

(
X ↗ µ

ϑ

)4

.

Skewness is the measure of the lopsidedness of the distribution; any symmetric
distribution will have a third central moment, if defined, of zero. A distribution
that is skewed to the left (the tail of the distribution is longer on the left) will
have a negative skewness. A distribution that is skewed to the right (the tail of
the distribution is longer on the right), will have a positive skewness.

Kurtosis is a measure of the heaviness of the tail of the distribution. If a
distribution has heavy tails, the kurtosis will be high; conversely, light-tailed
distributions have low kurtosis.

Figure 3.1: Moments and the shape of a distribution
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We see that moments give information about the shape of a distribution. Dif-
ferent orders of moments captures di!erent aspects of the distribution. In fact,
if we know all the moments (moments of infinitely high order), we can exactly
pin down the distribution.

Theorem 3.12. For a distribution of mass or probability on a bounded interval,

the collection of all the moments (of all orders, from 0 to ⇑) uniquely determines

the distribution.

So there are two ways of fully characterize a distribution:

1. Listing all the possible values along with their associated probabilities;

2. Giving all the moments of the distribution.

It is somewhat like the analogous Taylor theorem in the probability theory.
We can represent any distribution by a sequence of higher order “polynomials”:
E(X), E(X2), E(X3), . . .

Definition 3.10. Let X be a random variable. For each real number t, define
the moment generating function (MGF) as

MX(t) = E
(
e
tX


.

To see why it is “generating” moments, take the Taylor expansion of the expo-
nential function:

e
tX = 1 + tX +

t
2
X

2

2!
+

t
3
X

3

3!
+ · · ·

Hence,

MX(t) = E
(
e
tX


= 1 + E(X)t+ E(X2)

t
2

2!
+ · · ·

A natural question at this point is: What is the interpretation of t? The answer
is that t has no interpretation in particular; it’s just a bookkeeping device that
we introduce in order to encode the sequence of moments in a di!erentiable
function.

Theorem 3.13. Let MX(t) be the MGF of X. Then the n-th moment of X

is given by E(Xn) = M
(n)
X (0), where M

(n)
X denotes the n-th derivative of the

MGF.
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Theorem 3.14. The MGF of a random variable determines its distribution: if

two random variables have the same MGF, they must have the same distribution.

Theorem 3.15. If X and Y are independent, then the MGF of X + Y is the

product of the individual MGFs:

MX+Y (t) = MX(t)MY (t).

Example 3.18. For X ↓ Bern(p), etX takes on the value e
t with probability

p and the value 1 with probability q, so M(t) = E
(
e
tX


= pe

t + q. Since this
is finite for all values of t, the MGF is defined on the entire real line.

Example 3.19. The MGF of a Bin(n, p) random variable is M(t) = (pet+q)n,
since it is the product of n independent Bernoulli MGFs.

3.7 Inequalities*

This section introduces some of the most popular inequality in statistics and
general mathematics. Interestingly, our probability theories can shed light on
these inequalities that are otherwise hard to explain. We don’t show formal
proofs here, but just point out how these inequalities can be useful in statistics.

Theorem 3.16 (Cauchy-Schwarz inequality).


∑

xiyi

 ≃
∑

x
2
i

∑
y
2
i

Proof. If X,Y have zero means, their correlation can be written as

ϖXY =
E(XY )

E(X2)E(Y 2)

Since |ϖXY | ≃ 1, we always have

|E(XY )| ≃


E(X2)E(Y 2).

Consider {xi} and {yi} as realizations of X and Y with equal probabilities, such
that E(X) = 1

n

∑
xi. The original inequality is thus proved.
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Theorem 3.17 (Jensen’s inequality). For a convex function f , we have

1

n

∑
f(xi) ⇓ f

(
1

n

∑
xi

)
;

If f is concave, then

1

n

∑
f(xi) ≃ f

(
1

n

∑
xi

)
.

Proof. This is not a proof, but a special case that helps to understand Jensen’s
inequality. Since

V ar(X) = E(X2)↗ (E(X))2 ⇓ 0

We have

E(X2) ⇓ (E(X))2.

Note that f(X) = X
2 is a convex function, and E(↖) = 1

n

∑
↖, we have shown

the first inequality. The concave case is the opposite.

In general, if g is a convex function, then E(g(X)) ⇓ g(E(X)). If g is a concave
function, then E(g(X)) ≃ g(E(X)). In both cases, the only way that equal-
ity can hold is if there are constants a and b such that g(X) = a + bX with
probability 1.

Theorem 3.18 (Markov inequality). Let X be a random variable, then

P (|X| ⇓ a) ≃ E|X|
a

That is, the probability of |X| deviating from its mean by a multiple of a must

be less than 1/a.

Proof. Define a random variable

I|X|↓a =





1 if |X| ⇓ a

0 if |X| < a
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Note that P (|X| ⇓ a) = E(I|X|↓a). It always holds that

a · I|X|↓a ≃ |X|

Therefore,

E

a · I|X|↓a


≃ E|X|

Hence,

P (|X| ⇓ a) ≃ E|X|
a

.

For an intuitive interpretation, let X be the income of a randomly selected
individual from a population. Taking a = 2E(X), Markov’s inequality says that
P (X ⇓ 2E(X)) ≃ 1/2, i.e., it is impossible for more than half the population
to make at least twice the average income. This is clearly true, since if over
half the population were earning at least twice the average income, the average
income would be higher. Similarly, P (X ⇓ 3E(X)) ≃ 1/3: you can’t have more
than 1/3 of the population making at least three times the average income, since
those people would already drive the average above what it is.

Theorem 3.19 (Chebyshev inequality). Let X be a random variable with mean

µ and standard deviation ϑ, then

P (|X ↗ µ| > cϑ) ≃ 1

c2

That is, the probability of X deviating from its mean by a times the standard

deviation must be less than 1/a2.

Proof. We first show

P (|X ↗ µ| > a) ≃ ϑ
2

a2

This is true by taking squares and applying the Markov inequality,

P (|X ↗ µ| > a) = P ((X ↗ µ)2 > a
2) ≃ E(X ↗ µ)2

a2
=

ϑ
2

a2
.
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Substitute cϑ for a, we have the original inequality.

This gives us an upper bound on the probability of a random variable being
more than c standard deviations away from its mean, e.g., there can’t be more
than a 25% chance of being 2 or more standard deviations from the mean. Given
the mean and standard deviation of a random variable X, we know that µ± 2ϑ

captures 75% of its possible values; µ± 3ϑ captures 90% of the possible values.


