
Chapter 4

Discrete Distributions
(cont’d)

4.1 Geometric and Negative Binomial

Definition 4.1. Consider a sequence of independent Bernoulli trials, each with
the same success probability p. Let X be the number of failures before the first
successful trial. Then X has a Geometric distribution, X → Geom(p).

Let’s derive the PMF for the Geometric distribution. By definition,

P (X = k) = q
k
p

where q = 1↑ p. This is a valid PMF because

→∑

k=0

q
k
p = p

→∑

k=0

q
k =

p

1↑ q
= 1.

The expectation of X is given by

E(X) =
→∑

k=0

k · qkp = p

→∑

k=0

kq
k = p

q

p2
=

q

p
.

To see why this holds, taking derivative with respect to q on both sides of
∑→

k=0 q
k = 1

1↑q yields
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→∑

k=1

kq
k↑1 =

1

(1↑ q)2
;

Then multiply both sides by q:

→∑

k=1

kq
k =

q

(1↑ q)2
=

q

p2
.

A generalization of the Geometric distribution is the Negative Binomial distri-
bution.

Definition 4.2. In a sequence of independent Bernoulli trials with success
probability p, if X is the number of failures before the r-th success, then X is
said to have a Negative Binomial distribution, denoted X → NBin(r, p).

The PMF for Negative Binomial distribution, by definition, is given by

P (X = k) =

(
k + r ↑ 1

r ↑ 1

)
q
k
p
r
.

To compute the expectation, let X = X1 + · · · + Xr where Xi is the number
of failures between the (i↑ 1)-th success and the i-th success, 1 ↓ i ↓ r. Then
Xi → Geom(p). By linearity of expectations,

E(X) = E(X1) + · · ·+ E(Xr) = r
1↑ p

p
.

Example 4.1 (Toy collector). There are n types of toys. Assume each time
you buy a toy, it is equally likely to be any of the n types. What is the expected
number of toys you need to buy until you have a complete set?

Solution: Define the following random variables:

T =T1 + T2 + · · ·+ Tn

T1 =number of toys until 1st new type

T2 =additional number of toys until 2nd new type

T3 =additional number of toys until 3rd new type
...
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We know, T1 = 1, T2 ↑ 1 → Geom
(
n↑1
n

)
,..., Tj ↑ 1 → Geom

(
n↑(j↑1)

n

)
. Thus,

E(T ) =E(T1) + E(T2) + · · ·+ E(Tn)

=1 +
n

n↑ 1
+

n

n↑ 2
+ · · ·+ 1

n

=n(1 +
1

2
+

1

3
+ · · ·+ 1

n
)

↔n(log n+ 0.577).

4.2 Poisson distribution

Now we introduce arguably the most popular discrete distribution—Poisson
distribution. Poisson distribution is used to model independent events occurring
at a constant mean rate. It is like the Binomial distribution in the sense that
they both model the number of occurrence of events, but it is parametrized
on the “rate” of the event (how many times an event occurs in a unit of time
on average) rather than the total number of events and the probability of each
event. It is therefore more practical in real-world modeling since we mostly
observe the rate rather than the totality. We introduce the Poisson distribution
by showing that it is a limiting case of the Binomial distribution.

Problem 4.1. Suppose we are studying the distribution of the number of vis-
itors to a certain website. Every day, a million people independently decide
whether to visit the site, with probability p = 2↗ 10↑6 of visiting. What is the
probability of getting k visitors on a particular day?

We can model the problem with a Binomial distribution. Let X → Bin(n, p)

be the number of visitors, where n = 106 and p = 2 ↗ 10↑6. But it is easy to
run into computational di!culties with such a large n and small p. This is not
uncommon, if we want to model the number of emails one receives per day, or
the number of phone calls in a service center. In such cases, we could reasonably
assume n ↔ ↘ and p ↔ 0 while np = ω is a constant. We may call ω — the
“rate”, as it can be interpreted as the average visitors per day.
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Take limit of the Binomial distribution:

P (X = k) = lim
n↓→

(
n

k

)
p
k(1↑ p)n↑k

= lim
n↓→

(
n

k

)(
ω

n

)k (
1↑ ω

n

)n↑k

= lim
n↓→

(
n

k

)(
ω

n

)k (
1↑ ω

n

)n

︸ ︷︷ ︸
↓e→ω

(
1↑ ω

n

)↑k

︸ ︷︷ ︸
↓1

= lim
n↓→

n!

(n↑ k)!k!︸ ︷︷ ︸
↓1

ω
k

nk
e
↑ω

=
ω
k

nk
e
↑ω

.

This is the PMF of the Poisson distribution.

Definition 4.3. A random variable X has the Poisson distribution with
parameter ω if the PMF of X is

P (X = k) =
e
↑ω

ω
k

k!
, k = 0, 1, 2, . . .

We denote this as X → Pois(ω). We can easily verify this is a valid PMF because
∑→

k=0
ωk

k! = e
ω.

Theorem 4.1. If X → Bin(n, p) and we let n ↔ ↘ and p ↔ 0 such that

ω = np remains fixed, then the PMF of X converges to the PMF of Pois(ω).

The expectation of the Poisson distribution is

E(X) =
→∑

k=0

k · e
↑ω

ω
k

k!

=e
↑ω

→∑

k=1

ω
k

(k ↑ 1)!

=ωe
↑ω

→∑

k=1

ω
k↑1

(k ↑ 1)!

=ωe
↑ω

e
ω = ω.

To get the variance, we first compute E(X2). By LOTUS,
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E(X2) =
→∑

k=0

k
2 · e

↑ω
ω
k

k!
= e

↑ω
→∑

k=1

k
2ω

k

k!

Di"erentiate
∑→

k=0
ωk

k! = e
ω on both sides with respect to ω and multiply (re-

plenish) again by ω:

→∑

k↑1

k
ω
k

k!
= ωe

ω

Repeat:

→∑

k↑1

k
2ω

k

k!
= ω(eω + ωe

ω)

Therefore, we have

E(X2) = e
↑ω(ω+ ω

2)eω = ω+ ω
2

Finally,

V ar(X) = E(X2)↑ (E(X))2 = ω+ ω
2 ↑ ω

2 = ω.

Example 4.2. Continued with the website visiting example, there are one
million people visiting the site every day, each with probability p = 2 ↗ 10↑6.
Give an approximation for the probability of getting at least three visitors on a
particular day.

Let X be the number of visitors. Since n is large, p is small, np = 2 is fixed, X
is well approximated by Pois(2). Therefore,

P (X ≃ 3) = 1↑ P (X < 3) = 1↑ P (X = 0)↑ P (X = 1)↑ P (X = 2)

= 1↑ e
↑2 ↑ 2e↑2 ↑ 22

2!
e
↑2

= 1↑ 5e↑2 ⇐ 0.32.

Example 4.3. What is the probability of an earthquakes in a year in Sichuan?
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Historical records1 show that, from 26 BCE to 2021 CE, there were 309 earth-
quakes with magnitude of 5.0 or greater. Let X be the number of earthquakes
with magnitude 5.0 or greater. The annual rate ω of earthquakes is therefore
309
2048 = 0.15. Assume earthquakes are independent events (not always the case).
Then X → Pois(0.15). By the distribution of the Poisson distribution,

P (X = k) =






0.86 k = 0

0.13 k = 1

0.01 k = 2

.

The Poisson distribution is often used in situations where we are counting the
number of successes in a particular region or interval of time, where there are
a large number of trials, each with a small probability of success. The Poisson
paradigm says in situations like this, we can approximate the number of suc-
cesses by a Poisson distribution. It is more general than Theorem 4.1, as we
relax the assumption of independence and identical events.

Proposition 4.1 (Poisson paradigm). Let A1, . . . , An be events with pj =

P (Aj), where n is large, the pj are small, and the Aj are independent or weakly

dependent. Then X =
∑n

j=1 I(Aj), that is how many of the Aj occur, is ap-

proximately distributed as Pois(ω) with ω =
∑n

j=1 pj.

The Poisson paradigm is also called the law of rare events. The interpretation of
“rare” is that the pj are small, but ω is relatively stable. The number of events
that occur may not be exactly Poisson, but the Poisson distribution often gives
good approximations. Note that the conditions for the Poisson paradigm to hold
are fairly flexible: the n trials can have di"erent success probabilities, and the
trials don’t have to be independent, though they should not be very dependent.
So there are a wide variety of situations that can be cast in terms of the Poisson
paradigm. This makes the Poisson a very popular model.

Example 4.4. If we have m people and
(m
2

)
pairs. Each pair of people has

probability p = 1/365 of having the same birthday. Find the probability of at
least one match.

Solution: The probability of match is small, and the number of pairs is large. We
consider using the Poisson paradigm to approximate the number X of birthday

1
See this article from the Sichuan Earthquake Administration.
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matches. X ⇐ Pois(ω) where ω =
(m
2

)
1

365 . Then the probability of at least one
match is

P (X ≃ 1) = 1↑ P (X = 0) ⇐ 1↑ e
↑ω

.

For m = 23, ω = 253/365 and 1 ↑ e
↑ω ⇐ 0.5, which agrees with our previous

finding that we need 23 people to have 50% chance of a birthday match.

Example 4.5. Continued with the assumption above. What’s the probability
of two people who were born not only on the same day, but also at the same
hour and the same minute?

Solution: This is the birthday problem with c = 365 ·24 ·60 = 525600 categories
rather than 365 categories. By Poisson approximation, the probability of at
least one match is approximately 1 ↑ e

↑ω1 where ω1 =
(m
2

)
1

525600 . This would
require m = 854 to reach the break even point, 50% chance of getting a match.

Theorem 4.2. If X → Pois(ω1), Y → Pois(ω2), and X,Y are independent,

then X + Y → Pois(ω1 + ω2).

Proof. To get the PMF of X + Y , condition on X and use the law of total
probability:

P (X + Y = k) =
k∑

j=0

P (X + Y = k|X = j)P (X = j)

=
k∑

j=0

P (Y = k ↑ j)P (X = j)

=
k∑

j=0

e
↑ω2ω

k↑j
2

(k ↑ j)!
· e

↑ω1ω
j
1

j!

=
e
↑(ω1+ω2)

k!

k∑

j=0

(
k

j

)
ω
j
1ω

k↑j
2

=
e
↑(ω1+ω2)

k!
(ω1 + ω2)

k
.

We thus arrive at the PMF for Pois(ω1 + ω2). The intuition is, if there are two
di"erent types of events occurring at rates ω1 and ω2, independently, then the
overall event rate is ω1 + ω2.

Poisson processes serve as a simple model for events occurring in time or space:
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cars passing by a highway checkpoint, calls arriving at a switchboard, atomic
particles emitted from a radioactive source, etc.

Definition 4.4. A sequence of arrivals in continuous time is a Poisson process
with rate ω if

1. the number of arrivals in an interval of length t is distributed Pois(ωt);

2. the numbers of arrivals in disjoint time intervals are independent.

Example 4.6. Suppose that radioactive particles strike a certain target in
accordance with a Poisson process at an average rate of 3 particles per minute.
We shall determine the probability that 10 or more particles will strike the
target in a particular 2-minute period.

Solution: Since it is a Poisson process with ω = 3, the number of particles X

striking the target in t = 2 is X → Pois(6). Thus, P (X ≃ 10) = 1 ↑ P (X ↓
9) = 0.0838.

4.3 Joint, marginal and conditional distributions

A joint distribution is a statistical concept used to describe the likelihood of two
or more random variables occurring together. When we talk about joint distri-
bution, we are considering the probability of di"erent values of these variables
happening simultaneously, rather than in isolation.

To start with a concrete example, suppose we toss a coin and roll a die. There is
a distribution associated with the outcome of each of them. The joint probability
distribution is a distribution over combinations of these events.

Coin\Die 1 2 3 4 5 6
H 1/12 1/12 1/12 1/12 1/12 1/12
T 1/12 1/12 1/12 1/12 1/12 1/12

As this is an example with equal chance for every possible outcomes, all the
numbers in the table are the same. They represent the probability that the two
events happening simultaneously, e.g. P (Coin = H,Die = 6). The table is the
joint PMF, as it gives the probabilities associated with all possible combinations
of the outcomes.



CHAPTER 4. DISCRETE DISTRIBUTIONS (CONT’D) 80

Given the joint distribution, we are interested in: (i) the probability of simulta-
neous events (joint probability); (ii) the probability of an event irrespective of
the other variables (marginal probability); (iii) the probability of events given
the presence of other events (conditional probability).

Definition 4.5. Let X and Y be random variables. Consider the ordered pair
(X,Y ). If there are only finitely or at most countably many di"erent possible
values (x, y), we say that X and Y have a discrete joint distribution.

Definition 4.6. The joint PMF of X and Y is defined as the function p such
that for every point (x, y),

pXY (x, y) = P (X = x, Y = y)

where
∑

x

∑
y pXY (x, y) = 1. The comma means the two conditions have to be

satisfied at the same time.

Example 4.7. Let X be an indicator of an individual being a current smoker.
Let Y be the indicator of his developing lung cancer at some point in his life.
The joint PMF of X and Y is as specified in the table below.

Y = 1 Y = 0 Total
X = 1 0.05 0.20 0.25
X = 0 0.03 0.72 0.75
Total 0.08 0.92 1

Definition 4.7. The joint CDF of two random variables X and Y is defined
as the function F such that for all values of x and y,

F (x, y) = P (X ↓ x, Y ↓ y).

Definition 4.8. For discrete random variables X and Y , the marginal PMF
of X is

pX(x) =
∑

all y

P (X = x, Y = y)

That is, we marginalize out Y leaving only X.
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Definition 4.9. For discrete random variables X and Y , the conditional
PMF of Y given X = x is

pY |X(y|x) = P (X = x, Y = y)

P (X = x)

This is viewed as a function of y for fixed x.

Example 4.8. In the previous example, the conditional PMF of having lung
cancer conditioned on being a smoker is

P (Y = 1|X = 1) =
P (X = x, Y = y)

P (X = x)
=

0.05

0.25
=

1

5
.

The marginal PMF for having lung cancer is

P (Y = 1) =P (Y = 1, X = 0) + P (Y = 1, X = 1) = 0.08,

P (Y = 0) =P (Y = 0, X = 0) + P (Y = 0, X = 1) = 0.92.

Definition 4.10. Random variables X and Y are independent if for all x and
y,

F (x, y) = F (x)F (y).

If X and Y are discrete, this is equivalent to the condition

p(x, y) = pX(x)pY (y)

for all x and y, and it is also equivalent to the condition

pY |X(y|x) = PY (y)

for all y and all x such that P (X = x) > 0.

Example 4.9. Returning to the previous example, we verify that

P (X = 1, Y = 1) ⇒= P (X = 1)P (Y = 1).

Therefore, X and Y are not independent.


