
Chapter 5

Continuous Distributions

5.1 Continuous RVs

Continuous random variables, in many ways, are more versatile and useful than
discrete distributions. One key reason is that many quantities in the physical
world, such as temperature, height, weight, and time, are inherently continu-
ous in nature. These variables can take on any value within a range, providing
a more accurate representation of real-world phenomena compared to discrete
variables, which are limited to distinct values. Additionally, the probability den-
sity functions (PDFs) of continuous distributions are often defined by smooth,
di!erentiable functions. This mathematical structure allows us to apply calcu-
lus for analysis, enabling precise calculations of probabilities, expected values,
and other statistical measures. The ability to integrate and di!erentiate these
functions not only simplifies manipulation but also makes continuous distribu-
tions a powerful tool for solving complex problems in physics, engineering, and
data analysis.

Definition 5.1. A random variable has a continuous distribution if its CDF
is di!erentiable. A continuous random variable is a random variable with a
continuous distribution.

Definition 5.2. For a continuous random variable X with CDF F , the prob-
ability density function (PDF) of X is the derivative of the CDF, given by
f(x) = F

→(x). The support of X is the set of all x where f(x) > 0.

80



CHAPTER 5. CONTINUOUS DISTRIBUTIONS 81

Remark. By the fundamental theorem of calculus, we integrate a PDF to get
the CDF:

F (x) =

∫ x

↑↓
f(t)dt.

PDF di!ers from the discrete PMF in important ways:

• For a continuous random variable, P (X = x) = 0 for all x;

• The quantity f(x) is not a probability. To get the probability, we integrate
the PDF (probability is the area under the PDF):

P (a < X → b) = F (b)↑ F (a) =

∫ b

a
f(x)dx.

• Since any single value has probability 0, including or excluding endpoints
does not matter.

P (a < X < b) = P (a < X → b) = P (a → X < b) = P (a → X → b).

Theorem 5.1. The PDF f of a continuous random variable must satisfy the
following criteria:

• Nonnegative: f(x) ↓ 0;

• Integrates to 1:
∫↓
↑↓ f(x)dx = 1.

Definition 5.3. The expectation of a continuous random variable X with
PDF f is

E(X) =

∫ ↓

↑↓
xf(x)dx.

Theorem 5.2. If X is a continuous random variable with PDF f and g : R ↔
R. The LOTUS applies

E[g(X)] =

∫ ↓

↑↓
g(x)f(x)dx.
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Discrete Continuous

PMF/PDF P (X = x) = p(x) P (a → X → b) =
∫ b
a f(x)dx

CDF F (x) = P (X → x) =
∑

k↔x p(k) F (x) = P (X → x) =
∫ x
↑↓ f(t)dt

Expectation E(x) =
∑

x xP (X = x) E(X) =
∫ +↓
↑↓ xf(x)dx

LOTUS E[g(x)] =
∑

x g(x)P (X = x) E[g(x)] =
∫ +↓
↑↓ g(x)f(x)dx

5.2 Special integrals

There are many reasons to learn integrals. But the most compelling reason is
that math is no longer the same with integrals. We can have many amazing
results with integrals that were otherwise not imaginable. This section is not
directly related to our main theme. But let’s take a detour just to appreciate
the beauty of integrals.

Example 5.1. Show that
∫ +↓
↑↓ e

↑x2

dx =
↗
ω.

Proof. This is known as Gaussian integral, which is the kernel of the PDF of the
normal distribution. It also amazingly relates two of the most famous constants
in mathematics. It is not integrable by normal integration techniques. But it
can be solved by switching to the polar coordinate.

(∫ +↓

↑↓
e
↑x2

dx

)2

=

∫ +↓

↑↓
e
↑x2

dx

∫ +↓

↑↓
e
↑y2

dy

=

∫ +↓

↑↓

∫ +↓

↑↓
e
↑(x2+y2)

dxdy

=

∫ 2ω

0

∫ ↓

0
e
↑r2

rdrdε dA = dxdy = rdrdε

=

∫ 2ω

0

∫ ↓

0

1

2
e
↑u

dudε let u = r
2

=
1

2

∫ 2ω

0
dε = ω.
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Example 5.2. Show that
∫↓
0 t

n
e
↑t
dt = n!

Proof. !(z) =
∫↓
0 t

z↑1
e
↑t
dt is known as the Gamma function, which is defi-

nitely one of the most interesting functions in mathematics. It is the extension
of factorials to real numbers or even complex numbers. It also has many in-
teresting properties, such as !(n) = (n ↑ 1)!, !(1/2) =

↗
ω, !(3/2) =

↗
ω/2,

!→(1) = ↑ϑ and so on. The (n↑ 1) in the Gamma function is due to historical
reasons and does not matter in our case. We will prove the integral with n

instead of (n↑ 1).

There are many ways to prove this. One is to discover the recursive relationship
!(n + 1) = n!(n). But it does not give a clue why we need this integral to
approximate the factorial. We start with an elementary integral

∫ ↓

0
e
at
dt = ↑1

a

where a < 0. Di!erentiate both sides n times with respect to a:

∫ ↓

0
e
at
tdt = ↑(↑1)a↑2

∫ ↓

0
e
at
t
2
dt = ↑(↑1)(↑2)a↑3

∫ ↓

0
e
at
t
3
dt = ↑(↑1)(↑2)(↑3)a↑4

...
∫ ↓

0
e
at
t
n
dt = (↑1)n+1

n!a↑(n+1)

Let a = ↑1, we have ∫ ↓

0
e
t
t
n = n!

Example 5.3 (Bonus). Show that
∫ +↓
↑↓

sin x
x dx = ω.

Proof. The integrand sin x
x is also known denoted as sinc(x), which is widely used

in engineering and signal processing. It also has lots of amazing properties,
including this integral which evaluates exactly to ω. We first transform the
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integral with Feynman’s technique. Define the following integral

I(t) =

∫ ↓

0
e
↑tx sinx

x
dx

Note that I(0) gives back the original integral.

I(t) =

∫ 2ω

0
e
↑tx sinx

x
dx+

∫ 4ω

2ω
e
↑tx sinx

x
dx+ · · ·

Focus on a single segment:

Im(t) =

∫ 2ω(m+1)

2ωm
e
↑tx sinx

x
dx

Take derivative with respect to t:

I
→
m(t) =

∫ 2ω(m+1)

2ωm
e
↑tx(↑x)

sinx

x
dx =

∫ 2ω(m+1)

2ωm
e
↑tx(↑ sinx)dx

Apply integration by parts twice:

∫
e
↑tx(↑ sinx)dx =e

↑tx cosx↑
∫

e
↑tx(↑t) cosxdx

=e
↑tx cosx+ t

[
e
↑tx sinx↑

∫
e
↑tx(↑t) sinxdx

]

=e
↑tx cosx+ te

↑tx sinx+ t
2

∫
e
↑tx sinxdx

Rearrange,

∫
e
↑tx(↑ sinx)dx =

1

1 + t2

[
e
↑tx cosx+ te

↑tx sinx
]

Hence,

I
→
m(t) =

∫ 2ω(m+1)

2ωm
e
↑tx(↑ sinx)dx =

e
↑2ωt ↑ 1

1 + t2
e
↑2ωmt

Since cos(2ωm) = cos(2ω(m+ 1)) = 1 and sin(2ωm) = sin(2ω(m+ 1)) = 0. Let



CHAPTER 5. CONTINUOUS DISTRIBUTIONS 85

ϖ = e→2ωt↑1
1+t2 which does not depend on m, and ϱ

m = e
↑2ωmt. Then

I
→
m(t) = ϖϱ

m

Therefore,

I
→(t) =

↓∑

m=0

I
→
m(t) =

↓∑

m=0

ϖϱ
m =

ϖ

1↑ ϱ

Substitute back ϖ and ϱ,

I
→(t) =

e→2ωt↑1
1+t2

1↑ e↑2ωt
= ↑ 1

1 + t2

Since
∫
arctan t = 1

1+t2 + C, we have

∫ ↓

0
I
→(t) = I(↘)↑ I(0) = [↑ arctan t]↓0 = ↑ω

2

where I(↘) = 0 since e
↑tx ↔ 0 as t ↔ ↘; and I(0) is the original integral.

Hence,

∫ +↓

0

sinx

x
dx =

ω

2
.

5.3 Uniform distribution

Definition 5.4. Let a and b be two given real numbers such that a < b. Let
X be a random variable such that it is known that a → X → b and, for every
subinterval of [a, b], the probability that X will belong to that subinterval is
proportional to the length of that subinterval. We then say that the random
variable X has the Uniform distribution on the interval [a, b]. The PDF of
X is

f(x) =






1
b↑a for a → x → b

0 otherwise
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This is a valid PDF since
∫ +↓

↑↓
f(x)dx =

∫ b

a

1

b↑ a
dx =

1

b↑ a

∫ b

a
dx = 1.

The CDF of X is

F (x) =

∫ x

↑↓
f(t)dt =

∫ x

a
f(t)dt =






0 x < a

x↑a
b↑a a → x → b

1 x > b

.

The expectation of X:

E(X) =

∫ b

a
x

1

b↑ a
dx =

1

b↑ a

[
x
2

2

]b

a

=
a+ b

2
.

To figure out the variance, first compute

E(X2) =

∫ b

a
x
2 1

b↑ a
dx =

1

b↑ a

[
x
3

3

]b

a

=
a
2 + ab+ b

2

3

Thus,

V ar(X) = E(X2)↑ E
2(X) =

a
2 + ab+ b

2

3
↑ (a+ b)2

4
=

(b↑ a)2

12
.

Exercise 5.1. Let X ≃ Unif(0, 1). Find E(X) and V ar(X).

5.4 Normal distribution

The most widely used model for random variables with continuous distributions
is the family of normal distributions. One reason is that many real world samples
appears to be normally distributed (the mass centered around the mean). The
other reason is because of the Central Limit Theorem (will be discussed in later
chapters), which essentially says the sum (or mean) or any random samples are
approximately normal.

Definition 5.5. A random variable Z has the standard Normal distribution
with mean 0 and variance 1, denoted as Z ≃ N(0, 1), if Z has a PDF that follows
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f(z) =
1↗
2ω

e
↑z2/2

.

This is a valid PDF because
∫↓
↑↓ f(z)dz = 1, which directly follows from Ex-

ample 5.1. We further verify its mean and variance:

E(Z) =

∫ +↓

↑↓
z · 1↗

2ω
e
↑z2/2

dz = 0 by symmetry.

V ar(Z) = E(Z2)↑ (EZ)2 = E(Z2)

=

∫ +↓

↑↓
z
2 · 1↗

2ω
e
↑z2/2

dz

=
2↗
2ω

∫ ↓

0
z︸
u

· ze↑z2/2
dz︸  

dv

=
2↗
2ω







z(↑e

↑z2/2)
↓
0

+

∫ ↓

0
e
↑z2/2

dz

︸  
↗
2ω/2






= 1.

Definition 5.6. The CDF of standard normal distribution is usually denoted
by ”. Therefore,

”(z) =
1↗
2ω

∫ z

↑↓
e
↑t2/2

dt.

By symmetry, we have ”(↑z) = 1↑ ”(z).

Definition 5.7. Let X = µ+ ςZ where Z ≃ N(0, 1). Then we say X has the
Normal distribution with mean µ and variance ς

2, denoted as X ≃ N(µ,ς2).
The PDF of X is given by

f(x) =
1↗
2ως2

exp


↑1

2

(
x↑ µ

ς

)2

.

The mean and variance of X can be easily verified by the properties of expec-
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tation and variance.

E(X) = E(µ+ ςZ) = µ+ ςE(Z) = µ,

V ar(X) = V ar(µ+ ςZ) = ς
2
V ar(Z) = ς

2
.

To verify the PDF, we utilize the standard normal CDF:

P (X → x) = P

(
X ↑ µ

ς
→ x↑ µ

ς

)
= ”

(
x↑ µ

ς

)

The PDF is the derivative of the CDF,

f(x) =
1

ς
”→

(
x↑ µ

ς

)
=

1

ς
↗
2ω

exp


↑1

2

(
x↑ µ

ς

)2

.

The shape of the normal distribution is the famous bell-shaped curve.

The normal distribution has the “three-sigma rule”:

P (|X ↑ µ| → ς) ⇐ 0.68

P (|X ↑ µ| → 2ς) ⇐ 0.95

P (|X ↑ µ| → 3ς) ⇐ 0.997

Critical values: ”(↑1) ⇐ 0.16,”(↑2) ⇐ 0.025,”(↑3) ⇐ 0.0015.

Theorem 5.3. Let X have the Normal distribution with mean µ and variance
ς
2. Let F be the CDF of X. Then the standardization of X

Z =
X ↑ µ

ς
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has the standard normal distribution, and, for all x

F (x) = ”

(
x↑ µ

ς

)
.

To find the value of ”(z), we need to use the normal probability table or statis-
tical softwares.

Exercise 5.2. Suppose X has the normal distribution with mean 5 and stan-
dard deviation 2. Determine the value of P (1 < X < 8).

Example 5.4. Suppose the test score of a class of 50 students is normally
distributed with mean 80 and standard deviation 20 (the total mark is 100). A
student has scored 90. What is his percentile in the class?

Solution: X ≃ N(80, 20). We want to find P (X < 90). Standardize the
distribution

P (X < 90) = P

(
X ↑ 80

20
<

90↑ 80

20

)
= ”(0.5) ⇐ 0.69.

Theorem 5.4. Suppose X ≃ N(µ,ς2). If Y = aX + b, then Y has the Normal
distribution Y ≃ N(aµ+ b, a

2
ς
2).

Theorem 5.5. If the random variables X1, . . . , Xk are independent and Xi ≃
N(µi,ς

2
i ). Then

X1 + · · ·+Xk ≃ N(µ1 + · · ·+ µk,ς
2
1 + · · ·+ ς

2
k).

Example 5.5. Suppose the heights (in inches) of women and men indepen-
dently follow the normal distribution, W ≃ N(65, 1), M ≃ N(68, 9). (65 inches
⇐ 165 cm; 68 inches ⇐ 172 cm) Determine the probability that a randomly
selected woman will be taller than a man.

Solution: Let Z = W ↑M ≃ N(65↑68, 1+9). Then Z ≃ N(↑3, 10). Therefore,

P (Z > 0) = P

(
Z ↑ (↑3)↗

10
>

3↗
10

)
= 1↑ ”(0.949) = 0.171.

Example 5.6 (Distribution of sample mean). Let Xi be the height of a random
individual. Assume Xi ≃ N(µ,ς2). Let {X1, X2, . . . , Xn} be a sample of n

people. The sample mean is calculated as Xn = 1
n

∑n
i=1 Xi. Determine the

mean and variance of Xn.



CHAPTER 5. CONTINUOUS DISTRIBUTIONS 90

Solution: By the theorem above, the sum of a series of normal distributions is
also normal:

n∑

i=1

Xi = nXi ≃ N(nµ, nς2)

since we assume all Xi follow the same distribution. Therefore, the distribution
of the sample mean is

X̄n =
1

n

n∑

i=1

Xi ≃ N(µ,ς2
/n).

That is, X̄n has the normal distribution with mean µ and variance ς
2
/n.

How do we understand the sample mean is also a random variable? A sample
is a collection of random variables (each observation is a random variable in the
sense that the outcome is uncertain). If you were to choose another sample,
you would have a di!erent sample mean. Therefore, the sample mean is also a
random variable.

5.5 Chi-Square and Student-t

We now introduce two distributions that are closely related to the Normal dis-
tribution.

Definition 5.8. Let V = Z
2
1 + · · ·+ Z

2
n where Z1, Z2, . . . , Zn are i.i.d N(0, 1).

Then V is said to have the Chi-Square distribution with n degrees of freedom,
denoted as V ≃ φ

2(n).

The φ
2 distribution is a special case of the Gamma distribution that will be

introduced in the following sections. In fact, φ2(1) is Gamma( 12 ,
1
2 ); φ

2(n) is
Gamma(n2 ,

1
2 ).

Definition 5.9. Let
T =

Z
V/n

where Z ≃ N(0, 1), V ≃ φ
2(n), and Z is independent of V . Then T is said

to have the Student-t distribution with n degrees of freedom, denoted as
T ≃ tn.
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Student-t distribution is symmetric and has the similar bell-shaped curve of
the Normal distribution but with heavier tail. As n ↔ ↘, tn distribution
approaches the standard Normal distribution.

5.6 Exponential distribution

Imagine you are a shop owner that waits for your next customer. The customers
arrive randomly, with no preference for any specific time interval. What interests
us is the waiting time until the next customer arrives. Since the customers
arrives randomly, the likelihood of it coming in the next moment is the same
whether you’ve been waiting for one minute or ten minutes. In other words, the
waiting time between events that occur randomly and independently over time.
The exponential distribution is the mathematical model that best describes such
scenarios.

To model the waiting time, let X represent the time until the next event. A
crucial feature of this process is that the waiting time has no “memory.” That
is, no matter how long you’ve already waited, the probability of waiting an ad-
ditional amount of time is the same. Mathematically, this memoryless property
is expressed as:

P (X ↓ s+ t | X ↓ s) = P (X ↓ t), for all s, t ↓ 0.

The conditional probability can be rewritten using the definition of conditional
probabilities:

P (X ↓ s+ t | X ↓ s) =
P (X ↓ s+ t)

P (X ↓ s)
.

Thus, the memoryless property implies:

P (X ↓ s+ t)

P (X ↓ s)
= P (X ↓ t).

Let the survival function S(x) represent P (X ↓ x) . Substituting S(x) into the
equation gives:

S(s+ t)

S(s)
= S(t).

This reminds us of the exponential function. In fact, the only continuous and
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non-negative solution to this equation is:

S(x) = e
↑εx

, ↼ > 0,

where ↼ is a positive constant. This solution represents the probability that the
waiting time exceeds x , and ↼ determines how quickly the probability decreases
over time.

The CDF of X is exactly the opposite of S(x):

F (x) = 1↑ S(x) = 1↑ e
↑εx

.

Take derivative to get the PDF:

f(x) = F
→(x) = ↼e

↑εx
.

Definition 5.10. A random variable X is said to have the Exponential dis-
tribution with parameter ↼ if its PDF is

f(x) = ↼e
↑εx

, x > 0.

We denote this as X ≃ Expo(↼).↼ is interpreted as the “rate”, i.e. number of
events per unit of time.

To compute the expectation and variance, we first standardize the exponential
distribution. Let Y = ↼X, then Y ≃ Expo(1), because

P (Y → y) = P (X → y/↼) = 1↑ e
↑y

.

It follows that,

E(Y ) =

∫ ↓

0
ye

↑y
dy =

[
↑ye

↑y
]↓
0

+

∫ ↓

0
e
↑y

dy = 1;

V ar(Y ) = E(Y 2)↑ (EY )2 =

∫ ↓

0
y
2
e
↑y

dy ↑ 1 = 1.

For X = Y/↼, we have E(X) = 1
ε , V ar(X) = 1

ε2 .

Theorem 5.6 (Memoryless property). If X has the exponential distribution
with parameter ↼, and let t > 0, h > 0, then
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P (X ↓ t+ h|X ↓ t) = P (X ↓ h).

Proof. For t > 0 we have

P (X ↓ t) =

∫ ↓

t
↼e

↑εx
dx = e

↑εt
.

Hence for each t > 0 and each h > 0,

P (X ↓ t+ h|X ↓ t) =
P (X ↓ t+ h)

P (X ↓ t)
=

e
↑ε(t+h)

e↑εt
= e

↑εh = P (X ↓ h).

What are the implications of the memoryless property? If human lifetimes
were Exponential, then conditional on having survived to the age of 80, your
remaining lifetime would have the same distribution as that of a newborn baby!
Clearly, the memoryless property is not an appropriate description for human
lifetimes.

The memoryless property is a very special property of the Exponential distri-
bution. In fact, the Exponential is the only memoryless continuous distribution
(with support (0,↘)); and Geometric distribution is the only memoryless dis-
crete distribution (with support 0, 1, . . . ).

Example 5.7. We try to model the waiting time at a bus station. When any
bus arrives, suppose the time until the next bus arrives is an Exponential random
variable with mean 10 minutes. You arrive at the bus stop at a random time,
not knowing how long ago the previous bus came. What is the distribution of
your waiting time for the next bus? What is the average time that you have to
wait? What if you know the previous bus left 10 minutes ago, does that change
your expected waiting time?

Solution: Let X be the waiting time and we know it is an Exponential distribu-
tion. Since E(X) = 1/↼ = 10, the parameter ↼ = 1/10. Thus X ≃ Expo(0.1).
By the memoryless property, how much longer the next bus will take to arrive
is independent of how long ago the previous bus arrived. The average time you
have to wait is always 10 minutes.
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5.7 Poisson process

Now we point out the connection between the Poisson process and the exponen-
tial distribution — Let X1, X2, . . . be a sequence of events occurred over time.
If the number of events occurred in a given period of time follows a Poisson
distribution, then the time interval between two events follows an Exponential
distribution.

Suppose the number of events occurred in an interval t is subject to Poisson
distribution: N ≃ Pois(↼t). Let T be the waiting time before any event occurs.
The waiting time being t is equivalent to N = 0 for time period t:

P (T > t) = P (Nt = 0) = e
↑εt (↼t)

0

0!
= e

↑εt

where Nt = # emails in [0, t]. The CDF of T is

F (t) = 1↑ P (T > t) = 1↑ e
↑εt

.

The PDF of T is
f(t) = F

→(t) = ↼e
↑εt

.

This indicates T ≃ Expo(↼).

Definition 5.11. A sequence of arrivals in continuous time is a Poisson pro-
cess with rate ↼ if

• the number of arrivals in an interval of length t is distributed Pois(↼t);

• the numbers of arrivals in disjoint time intervals are independent.

Thus, Poisson distribution is used to model the number of random events in
a period of time. Exponential distribution is used to model the time interval
between two of these events.

When we introduced Poisson distribution in Chapter 3, we have said that Pois-
son distribution is used to model the scenario where the number of events is
large and the probability of each event occurring is small. What is the con-
nection here? The events occur randomly. Image we divide the time line into
infinitely small interval (e.g. milliseconds), then an event either happens in a
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millisecond or not. Thus, we have a large number of Bernoulli trials. The total
number of events occurred is approximated by a Binomial distribution, where
n is huge, and p the probability that an event occurs in a particular millisecond
is very small. This is the typical case of Poisson distribution.

Example 5.8. Suppose the number of calls to a phone number is a Poisson
process with parameter ↼. ↽ ≃ Exp(µ) is the duration of each call. It is
reasonable to assume that ↽ is independent of the Poisson process. What is the
probability that the (n + 1)-th call gets a busy signal, i.e. it comes when the
user is still responding to the n-th call?

Solution: Let Tn be the arrival time of the n-th customer. The probability we
want to find is

P (Tn + ↽ > Tn+1|↽) = P (Tn+1 ↑ Tn < ↽ |↽) = P (Xn < ↽ |↽).

As we have discussed, Xn follows an Exponential distribution. Thus,

P (Xn < ↽ |↽) = 1↑ e
↑εϑ

.

To find the unconditional probability,

P (Xn < ↽) =

∫ ↓

0
P (Xn < ↽ |↽)f(↽)d↽ =

∫ ↓

0
(1↑ e

↑εϑ )µe↑µϑ
d↽

= 1↑ µ

∫ ↓

0
e
↑(ε+µ)ϑ

d↽ =
↼

↼+ µ
.

5.8 Gamma distribution

The Gamma distribution is a continuous distribution on the positive real line;
it is a generalization of the Exponential distribution. While an Exponential
RV represents the waiting time for the first event to occur, we shall see that a
Gamma RV represents the total waiting time for n events to occur.

Let’s start with a simple case. Suppose we want to find out the total waiting
until the 2nd event occurred. Let Y = X1 + X2 where X1, X2 ≃ Expo(↼)

independently. If Y is discrete, we have P (Y = y) =
∑y

k=0 P (X1 = k,X2 =
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y ↑ k). For continuous y, we have

fY (y) =

∫ y

0
fX(x)fX(y ↑ x)dx =

∫ y

0
↼e

↑εx
↼e

↑ε(y↑x)
dx

=

∫ y

0
↼
2
e
↑εy

dx = ↼
2
e
↑εy

y.

If there is a third variable,

fZ(z) =

∫ z

0
fX(x)fY (z ↑ x)dx =

∫ z

0
↼e

↑εx
↼
2
e
↑ε(z↑x)(z ↑ x)dx

= ↼
3
e
↑εz

∫ z

0
(z ↑ x)dx = ↼

3
e
↑εz

z
2
/2.

The general pattern is the Gamma distribution.

Definition 5.12. An random variable X is said to have the Gamma distri-
bution with parameters a and ↼, a > 0 and ↼ > 0, if it has the PDF

f(x) =
↼
a

!(a)
x
a↑1

e
↑εx

, x > 0

We write X ≃ Gamma(a,↼).

Verify this is a valid PDF:

∫ ↓

0

1

!(a)
(↼x)ae↑εx dx

x

u=εx
=

1

!(a)

∫ ↓

0
u
a
e
↑u du

u
=

!(a)

!(a)
= 1.

Taking a = 1, the Gamma(1,↼) PDF is f(x) = ↼e
↑εx, which is the same as

Expo(↼). So Exponential distribution is a special case of Gamma distribution.

Let’s find the expectation and variance of the Gamma distribution. Let Y ≃
Gamma(a, 1). Recall ! function has the property !(a+ 1) = a!(a).

E(Y ) =

∫ ↓

0
y · 1

!(a)
y
a↑1

e
↑y

dy =
1

!(a)

∫ ↓

0
y
a
e
↑y

dy =
!(a+ 1)

!(a)
= a.

Apply LOTUS to evaluate the second moment:

E(Y 2) =

∫ ↓

0
y
2· 1

!(a)
y
a↑1

e
↑y

dy =
1

!(a)

∫ ↓

0
y
a+1

e
↑y

dy =
!(a+ 2)

!(a)
= (a+1)a.
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Therefore,
V ar(Y ) = (a+ 1)a↑ a

2 = a.

So for Y ≃ Gamma(a, 1), E(Y ) = V ar(Y ) = a. For the general case X ≃
Gamma(a,↼), we now show that X = Y

ε . Note that

FX(x) = P (X → x) = P (Y → x/↼) = FY (x/↼)

fX(x) =
dFX

dx
=

⇀FY

⇀y

dy

dx
= fY (y)↼

Therefore,

fX(x) =
1

!(a)
y
a↑1

e
↑y

↼ =
↼
a

!(a)
x
a↑1

e
↑εx

.

Hence, we have E(X) = a
ε , V ar(X) = a

ε2 .

Theorem 5.7. Let X1, . . . , Xn be independent and identical Expo(↼). Then

X1 + · · ·+Xn ≃ Gamma(n,↼).

Proof. Let’s prove by showing the MGFs are equivalent.

MX(t) = E(etX) =

∫ ↓

0
e
tx
↼e

↑εx
dx =

↼

↼↑ t
for t < ↼

Thus, the MGF of Y = X1 + · · · + Xn is MY (t) = (MX(t))n =


ε
ε↑t

n
. We

verify this is the MGF of a Gamma distribution. Suppose Y ≃ Gamma(n,↼),
it has MGF:

MY (t) = E(etY ) =

∫ ↓

0
e
ty ↼

n

!(a)
y
n↑1

e
↑εy

dy

=
↼
n

(↼↑ t)n

∫ ↓

0

1

!(a)
((↼↑ t)y)n↑1

e
↑(ε↑t)y(↼↑ t)dy

=
↼
n

(↼↑ t)n

∫ ↓

0

1

!(a)
u
n↑1

e
↑u

du u = (↼↑ t)y

=

(
↼

↼↑ t

)n

.
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Thus, if Xi represents the i.i.d inter-arrival time. Y has the interpretation of
the arrival time until the n-th event.

Y =
n∑

i=1

Xi =
n∑

i=1

(time of the i-th arrival) ≃ Gamma(n,↼).

Example 5.9 (Service time in a queue). Customer i must wait time Xi for
service once reaching the head of the queue. The average service rate is 1
customer per 10 minutes. Assume the service for each customer is independent.
If you are the 5th in the queue. What is the expected waiting to be served?

Solution: Xi ≃ Expo(0.1). Then E(Xi) = 10. Let Y be the time until you
are served. Then Y ≃ Gamma(5, 0.1). Thus, E(Y ) = 5

0.1 = 50 minutes. The
probabilities of some selected values:

P (Y = t) =






0.009 t = 20

0.020 t = 40

0.009 t = 70

.

5.9 Beta distribution*

The Beta distribution is a continuous distribution on the interval (0, 1). It
is a generalization of the Unif(0, 1) distribution, allowing the PDF to be non-
constant on (0, 1).

Definition 5.13. A random variable X is said to have the Beta distribution
with parameters a and b, a > 0 and b > 0, if its PDF is

f(x) =
1

ϱ(a, b)
x
a↑1(1↑ x)b↑1

, 0 < x < 1

where the constant ϱ(a, b) is chosen to make the PDF integrate to 1. We write
this as X ≃ Beta(a, b).

The Beta distribution takes di!erent shapes for di!erent a and b values. Here
are some general patterns:
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• If a = b = 1, the Beta(1, 1) PDF is constant on (0, 1), equivalent to
Unif(0, 1).

• If a < 1 and b < 1, the PDF is U-shaped and opens upward. If a > 1 and
b > 1, the PDF opens downward.

• If a = b, the PDF is symmetric about 1/2. If a > b, the PDF favors values
larger than 1/2. If a < b, the PDF favors values smaller than 1/2.

To make the PDF integrates to 1, the constant ϱ(a, b) has to satisfy

ϱ(a, b) =

∫ 1

0
x
a↑1(1↑ x)b↑1

dx.

We now try to find this integral:

ϱ(a, b) =

∫ 1

0
x
a↑1

︸  
f

(1↑ x)b↑1

︸  
g↑

dx

=

[
↑x

a↑1 (1↑ x)b

b

]1

0

+

∫ 1

0
(a↑ 1)xa↑2 (1↑ x)b

b
dx

=
a↑ 1

b
ϱ(a↑ 1, b+ 1)

=
a↑ 1

b
· a↑ 2

b+ 1
ϱ(a↑ 2, b+ 2)

=
a↑ 1

b
· a↑ 2

b+ 1
· a↑ 3

b+ 2
ϱ(a↑ 3, b+ 3)

...

=
(a↑ 1)!

b(b+ 1)(b+ 2) · · · (b+ a↑ 2)
ϱ(1, a+ b↑ 1)︸  

1
a+b→1

=
(a↑ 1)!
(b+a↑2)!
(b↑1)!

· 1

a+ b↑ 1

=
(a↑ 1)!(b↑ 1)!

(a+ b↑ 1)!

=
!(a)!(b)

!(a+ b)
.

Beta distributions are often used as priors for parameters in Bayesian inference.



CHAPTER 5. CONTINUOUS DISTRIBUTIONS 100

We do not cover Bayesian inference in this book. Nonetheless we illustrate this
with an example.

Example 5.10 (Beta-Binomial conjugacy). We have a coin that lands Heads
with probability p, but we don’t know what p is. Our goal is to infer the value
of p after observing the outcomes of n tosses of the coin. The larger that n is,
the more accurately we should be able to estimate p.

Solution: We model the unknown parameter p as a Beta distribution, p ≃
Beta(a, b). Since we are completely ignorant about this p, we can also model it
as the uniform distribution. But we will see that using the Beta distribution is
even simpler than the uniform distribution. Let X be the number of heads in
n tosses of the coin. Then

X|p ≃ Bin(n, p)

Apply the Bayes’ rule to inverse the conditioning:

f(p|X = k) =
P (X = k|p)f(p)

P (X = k)

=

n
k


p
k(1↑ p)n↑k · 1

ϖ(a,b)p
a↑1(1↑ p)b↑1

∫ 1
0

n
k


pk(1↑ p)n↑kf(p)dp

⇒ p
a+k↑1(1↑ p)b+n↑k↑1

This the kernel of Beta(a+k, b+n↑k). The rest is just a normalizing constant.
Therefore,

p|X = k ≃ Beta(a+ k, b+ n↑ k).

The posterior distribution of p after observing X = k is still a Beta distribution!
This is a special relationship between the Beta and Binomial distributions called
conjugacy : if we have a Beta prior distribution on p and data that are condi-
tionally Binomial given p, then when going from prior to posterior, we don’t
leave the family of Beta distributions. We say that the Beta is the conjugate
prior of the Binomial.


