
Chapter 6

Joint Distributions

6.1 Joint, marginal and conditional distributions

A joint distribution is a statistical concept used to describe the likelihood of
two or more random variables occurring together. When we talk about joint
distribution, we are considering the probability of di!erent values of these vari-
ables happening simultaneously, rather than in isolation. Suppose we toss a coin
and roll a die. Joint probability represents the probability that the two events
happening simultaneously, e.g. P (Coin = H,Die = 6).

Given the joint distribution, we are interested in: (i) the distribution of multi-
variables simultaneously (joint probability); (ii) the distribution of one variable
ignoring other variables (marginal probability); (iii) the distribution of one vari-
able given the value of other variables (conditional probability).
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Example 6.1. Let X be an indicator of an individual being a current smoker.
Let Y be the indicator of his developing lung cancer at some point in his life.
The joint PMF of X and Y is as specified in the table below.

Y = 1 Y = 0 Total

X = 1 0.05 0.20 0.25

X = 0 0.03 0.72 0.75

Total 0.08 0.92 1

The marginal PMF for having lung cancer is

P (Y = 1) =P (Y = 1, X = 0) + P (Y = 1, X = 1) = 0.08,

P (Y = 0) =P (Y = 0, X = 0) + P (Y = 0, X = 1) = 0.92.

The conditional PMF of having lung cancer conditioned on being a smoker is

P (Y = 1|X = 1) =
P (X = x, Y = y)

P (X = x)
=

0.05

0.25
=

1

5
.

In this example, X,Y are not independent, because

P (X = 1, Y = 1) ↑= P (X = 1)P (Y = 1).

Example 6.2. Suppose X and Y are uniformly distributed on a disk {(x, y) :
x
2 + y

2 → 1}. Find the joint PDF, marginal distributions and conditional
distributions. Are X and Y independent?

Solution: The area of the disk is ω, therefore

f(x, y) =






1
ε x

2 + y
2 → 1

0 otherwise

The marginal distributions are
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fX(x) =

∫ ↓
1+x2

↑
↓
1↑x2

1

ω
dy =

2

ω

√
1↓ x2, ↓1 → x → 1

fY (y) =

∫ ↔
1+y2

↑
↔

1↑y2

1

ω
dx =

2

ω

√
1↓ y2, ↓1 → y → 1

The conditional distributions are

fY |X(y|x) = f(x, y)

fX(x)
=

1
ε

2
ε

↔
1↓ x2

=
1

2
↔
1↓ x2

Therefore, Y |X ↗ Unif(↓
↔
1↓ x2,

↔
1↓ x2).

Since f(x, y) ↑= fX(x)fY (y), X and Y are not independent. This is because
knowing the value of X constrains the value of Y .

Example 6.3. Suppose X,Y
iid↗ Unif(0, 1). Find the probability P

(
Y → 1

2X

)
.

Solution: The joint distribution is

f(x, y) =





1 0 → x → 1, 0 → y → 1

0 otherwise

P

(
Y → 1

2X

)
=

∫ 1/2

0

∫ 1

0
1dydx+

∫ 1

1/2

∫ 1/2x

0
1dydx =

1

2
+

∫ 1

1/2

1

2x
dx =

1

2
+ln

↔
2.

Example 6.4. For X,Y
iid↗ Unif(0, 1), find E(|X ↓ Y |).

Solution: Apply 2D LOTUS:

E(|X ↓ Y |) =
∫ 1

0

∫ 1

0
|x↓ y|dxdy

=

∫ 1

0

∫ 1

y
(x↓ y)dxdy +

∫ 1

0

∫ y

0
(y ↓ x)dxdy

=2

∫ 1

0

∫ 1

y
(x↓ y)dxdy

=
1

3
.
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Example 6.5. X,Y
iid↗ N(0, 1), find E(|X ↓ Y |).

Solution: Since the sum or di!erence of independent Normals is Normal, X ↓
Y ↗ N(0, 2). Let Z = X ↓ Y . Then Z ↗ N(0, 1), and E(|X ↓ Y |) =

↔
2E(|Z|).

Apply LOTUS,

E(|Z|) =
∫ →

↑→
|z| 1↔

2ω
e
↑z2/2

dz = 2

∫ →

0
z

1↔
2ω

e
↑z2/2

dz =

√
2

ω
,

Therefore, E(|X ↓ Y |) = 2↓
ε
.

6.2 Joint normal distribution

Definition 6.1. (X,Y ) is said to have a Bivariate Normal distribution if the
joint PDF satisfies

f(x, y) =
1

2ω
√
1↓ ε2

exp

(
↓ 1

2(1↓ ε2)
(x2 + y

2 ↓ 2εxy)

)

where ε ↘ (↓1, 1) is the correlation between X and Y .

A Multivariate Normal (MVN) is fully specified by knowing the mean of
each component, the variance of each component, and the covariance or correla-
tion between any two components. In other words, the parameters of an MVN
random vector (X1, ..., Xk) are as follows:

• the mean vector (µ1, ..., µk), where E(Xj) = µj ;

• the covariance matrix Cov(Xi, Xj) for 1 → i, j → k.

If (X1, ..., Xk) is MVN, then the marginal distribution of every Xj is Normal.
However, the converse is false: it is possible to have Normally distributed
X1, ..., Xk such that (X1, ..., Xk) is not Multivariate Normal.

Theorem 6.1. A random vector (X1, ..., Xk) is Multivariate Normal if every
linear combination of the Xj has a Normal distribution. That is, we require
t1X1 + · · · + tkXk to have a Normal distribution for any choice of constants
t1, ..., tk.
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Theorem 6.2. Within an MVN random vector, uncorrelated implies indepen-
dent. In particular, if (X,Y ) is Bivariate Normal and Corr(X,Y ) = 0, then X
and Y are independent.

This is a special property of MVN random variables. In general, uncorrelated
does not imply independent.

Theorem 6.3. If (X,Y ) is Bivariate Normal, then the conditional expectation
satisfies

E(Y |X) = E(Y ) +
Cov(X,Y )

V ar(X)
(X ↓ E(X)).

This is also a special property of MVN —E(Y |X) is a linear function of X.
This is not the case in general.

6.3 Conditional expectation

Theorem 6.4. For any random variable X and Y ,

E(E(Y |X)) = E(Y ).

This is known as the law of iterated expectation.

Proof. Note that E(Y |X) = g(X) is a function of X. Apply LOTUS:

E(E(Y |X)) =

∫
g(x)f(x)dx

=

∫ (∫
yf(y|x)dy

)
f(x)dx

=

∫ ∫
yf(y|x)f(x)dydx

=

∫
y

∫
f(y, x)dx dy

=

∫ →

↑→
yf(y)dy

= E(Y ).
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Theorem 6.5. For any random variable X and Y , and any function g,

E(g(X)Y |X) = g(X)E(Y |X).

Proof. For any specific value of X = x, g(x) is a constant. Thus, E(g(x)Y |X =

x) = g(x)E(Y |X = x). This is true for all values of x.

Example 6.6 (PG exam). Suppose X ↗ Unif(0, 1), and Y |X ↗ N(X,X
2),

meaning that for a given X = x, Y is normally distributed with mean x and
variance x

2
. Find E(Y ), V ar(Y ) and Cov(X,Y ).

Solution:

Since Y |X ↗ N(X,X
2), we know E(Y |X) = X. By the law of iterated expec-

tation,
E(Y ) = E(E(Y |X)) = E(X) =

1

2
.

For the variance,

V ar(Y ) = E(Y 2)↓ (E(Y ))2 = E(E(Y 2|X))↓ 1

4
.

Since

V ar(Y |X) = E(Y 2|X)↓ E
2(Y |X) = E(Y 2|X)↓X

2 = X
2
,

we have E(Y 2|X) = 2X2. Meanwhile, E(X2) =
∫ 1
0 x

2 · 1dx = 1
3 . Therefore,

V ar(Y ) =
2

3
↓ 1

4
=

5

12
.

For the covariance,

E(XY ) = E(E(XY |X)) = E(XE(Y |X)) = E(X2) =
1

3
,

Cov(X,Y ) = E(XY )↓ E(X)E(Y ) =
1

3
↓ 1

4
=

1

12
.

Theorem 6.6. Conditional expectation E(Y |X) is the best predictor for Y using
X (minimized the square loss function).

Proof. Let g(X) be a predictor for Y using X. We want to find the g such that
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minimizes E(Y ↓ g(X))2.

E(Y ↓ g(X))2 = E(Y ↓ E(Y |X) + E(Y |X)↓ g(X))2

= E(Y ↓ E(Y |X))2 + 2E(Y ↓ E(Y |X)︸ ︷︷ 
E(Y )=E(E(Y |X))

((E(Y |X)↓ g(X)) + E(E(Y |X)↓ g(X))2

= E(Y ↓ E(Y |X))2 + E(E(Y |X)↓ g(X))2

≃ E(Y ↓ E(Y |X))2.

Therefore, E(Y ↓ g(X))2 is minimized when g(X) = E(Y |X).

6.4 Linear conditional expectation model

Definition 6.2. An extremely widely used method for data analysis in statistics
is linear regression. In its most basic form, we want to predict the mean of Y
using a single explanatory variable X. A linear conditional expectation

model assumes that E(Y |X) is linear in X:

E(Y |X) = a+ bX,

or equivalently,
Y = a+ bX + ϑ,

with E(ϑ|X) = 0. The intercept and the slope is given by

b =
Cov(X,Y )

V ar(X)
, a = E(Y )↓ bE(X).

We first show the equivalence of the two expressions of the model. Let Y =

a+ bX + ϑ, with E(ϑ|X) = 0. Then by linearity,

E(Y |X) = E(a|X) + E(bX|X) + E(ϑ|X) = a+ bX.

Conversely, suppose that E(Y |X) = a+ bX, and define

ϑ = Y ↓ (a+ bX).
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Then Y = a+ bX + ϑ, with

E(ϑ|X) = E(Y |X)↓ E(a+ bX|X) = E(Y |X)↓ (a+ bX) = 0.

To derive the expression for a and b, take covariance between X and Y ,

Cov(X,Y ) = Cov(X, a+ bX + ϑ)

= Cov(X, a) + bCov(X,X) + Cov(X, ϑ)

= bV ar(X) + Cov(X, ϑ)

Note that Cov(X, ϑ) = 0 because

Cov(X, ϑ) = E(Xϑ)↓ E(X)E(ϑ)

= E(E(Xϑ|X))↓ E(X)E(E(ϑ|X))

= E(XE(ϑ|X))↓ E(X)E(E(ϑ|X))

= 0

Therefore,
Cov(X,Y ) = bV ar(X)

Thus,

b =
Cov(X,Y )

V ar(X)
,

a = E(Y )↓ bE(X) = E(Y )↓ Cov(X,Y )

V ar(X)
E(X).

6.5 Change of variables

Theorem 6.7. Let X be a continuous r.v. with PDF fX , and let Y = g(X),
where g is di!erentiable and strictly increasing (or strictly decreasing). Then
the PDF of Y is given by

fY (y) = fX(x)


dx

dy

 ,

where x = g
↑1(y).
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Proof. Let g be strictly increasing. The CDF of Y is

FY (y) = P (Y → y) = P (g(X) → y) = P (X → g
↑1(y)) = FX(g↑1(y)) = FX(x)

By the chain rule, the PDF of Y is

fY (y) = fX(x)
dx

dy
.

If g is strictly decreasing,

FY (y) = P (Y → y) = P (g(X) → y) = P (X ≃ g
↑1(y)) = 1↓FX(g↑1(y)) = 1↓FX(x)

Then the PDF of Y is
fY (y) = ↓fX(x)

dx

dy
.

But in this case, dx/dy < 0. So taking absolute value covers both cases.

Example 6.7 (Log-Normal PDF). Let X ↗ N(0, 1), Y = e
X . Then the

distribution of Y is called the Log-Normal distribution. Find the PDF of Y .

Since g(x) = e
x is strictly increasing. Let y = e

x, so x = log y and dy/dx = e
x.

Then
fY (y) = fX(x)


dx

dy

 = ϖ(x)
1

ex
= ϖ(log y)

1

y
, y > 0.

Note that after applying the change of variables formula, we write everything on
the right-hand side in terms of y, and we specify the support of the distribution.
To determine the support, we just observe that as x ranges from ↓⇐ to⇐, ex

ranges from 0 to ⇐.

Example 6.8 (Chi-Square PDF). Let X ↗ N(0, 1), Y = X
2. The distribution

of Y is an example of a Chi-Square distribution. Find the PDF of Y .

In this case, we can no longer apply the change of variables formula because
g(x) = x

2 is not one-to-one. Instead, we use the CDF:

FY (y) = P (X2 → y) = P (↓↔
y → X → ↔

y) = !(
↔
y)↓ !(↓↔

y) = 2!(
↔
y)↓ 1

Therefore,

fY (y) = 2ϖ(
↔
y) · 1

2
y
↑1/2 = ϖ(

↔
y)y↑1/2

, y > 0.
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Theorem 6.8. Let X = (X1, . . . , Xn) be a continuous random vector with joint
PDF fX, and let Y = g(X) where g is an invertible function from Rn to Rn.
Let y = g(x). Define the Jacobian matrix:

ϱx

ϱy
=





ωx1
ωy1

ωx1
ωy2

. . .
ωx1
ωyn

...
...

...
ωxn
ωy1

ωxn
ωy2

. . .
ωxn
ωyn



 .

Also assume that the determinant of the Jacobian matrix is never 0. Then the
joint PDF of Y is

fY(y) = fX(x)


ϱx

ϱy

 ,

where
ωxωy

 is the absolute value of the determinant of the Jacobian matrix.

Example 6.9. Suppose X,Y
iid↗ Expo(1). Find the distribution of X/(X+Y ).

Solution: Let U = X
X+Y , V = X + Y . Then X = UV , Y = V ↓ UV . The

determinant of the Jacobian matrix is


ϱ(x, y)

ϱ(u, v)

 =


v u

↓v 1↓ u

 = v

Thus, the joint distribution of (U, V ) is

fUV (u, v) = fXY (x, y)|v| = fX(x)fY (y)v = e
↑(x+y)

v = e
↑v

v.

The distribution of X/(X + Y ) is equivalent to the marginal distribution of U :

fU (u) =

∫ →

0
e
↑v

vdv = 1

for 0 → u → 1. Hence U is a Uniform distribution over [0,1].


