
Chapter 7

Sampling distribution

7.1 Samples and statistics

We model real-world uncertain events with random variables. We have also in-
troduced various distributions suitable to model di!erent kinds of events. How-
ever, we never observe the full distribution or the true parameters of the assumed
distribution. Instead, we only observe a sample of that random variable. We can
only infer the properties of the distribution from a limited sample. For example,
suppose we model the hight of an Asian women with a normal distribution. But
we never know exactly what the mean and variance are. We can only observe a
sample of the distribution.

In statistics, the conceptual distribution F is called the population distribu-

tion, or just the population.1 It is tempting to think of the population as all
the observations (e.g. all the population on the planet), but this is not exactly
correct. The population distribution is more of a mathematical abstraction or
an assumption. Suppose we are modeling the height of human being, even if
we have all the observations on the planet, that does not include the people
that have died or yet to be born. Thus, it is still a sample of the assumed
distribution.

A collection of random variables {X1, X2, . . . , Xn} is a random sample from
the population F if Xi are independent and identically distributed (i.i.d)

1
This section is based on Bruce Hansen’s Probability and Statistics for Economists.
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with distribution F . What we mean by i.i.d is that X1, . . . , Xn are mutually
independent and have exactly the same distribution Xi → F . Survey sampling
is an useful metaphor to understand random sampling, in which we randomly
select a subset of the population with equal probability. The sample size n is
the number of individuals in the sample.

A data set is a collection of numbers, typically organized by observation. We
sometimes call a data set also as a sample. But it should not be confused with
the random sample defined above. As the former is a collection of random
variables, whereas the latter is one realization of the random variables.

Typically, we will use X without the subscript to denote a random variable or
vector with distribution F , Xi with a subscript to denote a random observation
in the sample, and xi or x to denote a specific or realized value.

The problem of statistical inference is to learn about the underlying process
— the population distribution or data generating process — by examining the
observations. In most cases, we assume the population distribution and want to
learn about the its parameters (e.g. µ and ω

2 in the normal distribution). As a
convention, we use greek letters to denote population parameters.

A statistic is a function of the random sample {X1, X2, . . . , Xn}. Recall that
there is a distinction between random variables and their realizations. Similarly
there is a distinction between a statistic as a function of a random sample —
and is therefore a random variable as well — and a statistic as a function of the
realized sample, which is a realized value. When we treat a statistic as random
we are viewing it is a function of a sample of random variables. When we treat
it as a realized value we are viewing it as a function of a set of realized values.
One way of viewing the distinction is to think of “before viewing the data” and
“after viewing the data”. When we think about a statistic “before viewing” we
do not know what value it will take. From our vantage point it is unknown and
random. After viewing the data and specifically after computing and viewing
the statistic the latter is a specific number and is therefore a realization. It is
what it is and it is not changing. The randomness is the process by which the
data was generated — and the understanding that if this process were repeated
the sample would be di!erent and the specific realization would be therefore
di!erent. The distribution of a statistic is called the sampling distribution,
since it is the distribution induced by sampling.

An estimator ε̂ for a population parameter ε is a statistic intended to infer ε.
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It is conventional to use the hat notation ε̂ to denote an estimator. Note that
ε̂ is a statistic and hence also a random variable. We call ε̂ an estimate when
it is a specific value (or realized value) calculated in a specific sample.

A standard way to construct an estimator is by the analog principle. The idea is
to express the parameter ε as a function of the population F , and then express
the estimator ε̂ as the analog function in the sample.

For example, suppose we want to construct an estimator for the population mean
µ = E(X). By definition, if each value of X is of equal probability, µ is simply
the average. By analogy, we construct the sample mean as X̄n = 1

n

∑n
i=1 Xi.

It is conventional to denote a sample average by the notation “X bar”. Because
it is an estimator for µ, we also denote it as µ̂ = X̄n. Note that from di!erent
samples we calculate di!erent estimates. In one sample, µ̂ = 6.5; in another
sample, µ̂ = 6.7. All of them are erroneous estimate of the true parameter µ.
The question is therefore how close they are to the true parameter. To answer
this question, we need to study the distribution of the sample mean.

7.2 Law of large numbers

We now introduce two important theorems describing the behavior of the sample
mean as the sample size grows. Throughout this section and the next, we assume
X1, X2, . . . , Xn are i.i.d RVs drawn from a population with mean µ and variance
ω
2. The sample mean is defined as

X̄n =
X1 + · · ·+Xn

n
.

As we have discussed previously, the sample mean is itself a random variable
with mean and variance:

E(X̄n) =
1

n
E(X1 + · · ·+Xn) =

1

n
(E(X1) + · · ·+ E(Xn)) = µ,

V ar(X̄n) =
1

n2
V ar(X1 + · · ·+Xn)

iid
=

1

n2
(V ar(X1) + · · ·+ V ar(Xn)) =

ω
2

n
.

The law of large numbers (LLN) says that as n grows, the sample mean X̄n

converges to the true mean µ.
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Theorem 7.1 (Strong law of large numbers). The sample mean X̄n converges
to the true mean µ point-wise as n ↑ ↓, with probability 1. In other words, the
event X̄n ↑ µ has probability 1.

Theorem 7.2 (Weak law of large numbers). For all ϑ > 0, P (|X̄n↔µ| > ϑ) ↑ 0

as n ↑ ↓. (this is known as converge in probability).

We don’t need a rigorous proof here. But an intuitive proof is obvious. As
n ↑ ↓, V ar(X̄n) =

ω2

n ↑ 0. The random variable X̄n becomes fixed at µ as n

becomes large. Thus, it converges to µ in a probabilistic sense.

It seems that the LLN just states the obvious. But it has wide applications in
daily time that you might not even realize. What it says is essentially this: the
uncertainty at the individual level becomes certain when aggregating together;
the risks that are unmanageable at the individual level becomes manageable
collectively. Think about a rare disease, it happens at 1 out of a million proba-
bility. For each individual, no one knows if they will get the disease or not. But
as the sample size gets large, suppose we have one billion population, the LLN
says the sample mean will be very close the true mean. That is, there will be
almost surely 1000 people being infected by the disease. We provide two more
examples.

Example 7.1 (Lottery). A lottery company is designing a game with a 6-digit
format. Each time someone buys a ticket, they receive a randomly generated
6-digit number. Only one number will win the grand prize of 10 million dollars.
What should the company charge per ticket to break even?

Solution: The probability of winning the game is p = 1/106. Suppose the
company has sold n tickets. The price for each ticket is x. The revenue for
the company is therefore xn. By the LLN, the cost of the company should be
very close to 107np. The break even point is xn = 107np. So x = 107p = 10.
Therefore, if the company sells each ticket above 10 dollars. The business is
surely profitable as long as n is large. If the company is a monopoly, it can reap
as much profit as it desires as long as they know the basic probability theory!
The same can be said about gambling companies.

Example 7.2 (Insurance). Insurance is anther great application of the LLN. It
is essentially the same as the the lottery game but most people do not realize it.
Suppose there is a disease with infection rate of 1 out of 1 million. The medical
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expenditure to cure the disease is 10 million dollars. How much the insurance
company should charge per customer to cover this disease?

Solution: The solution is essentially the same as above. Suppose the premium
for the insurance product is x. The revenue of the company by selling the
premium is xn. The cost is — when one customer is infected, the company
has to pay the medical cost —107np. The break even price for the insurance
premium is thus 10 dollars.

What is the implication of this insurance? Without the insurance, each individ-
ual either chooses to set aside 10 million dollars pre-cautiously for the disease
(if he is rich enough) or be exposed to the risk completely uncovered. The in-
surance product enables everyone to get covered at a cost of just 10 dollars. It
is a typical example that the unmanageable risk at the individual level becomes
manageable collectively.

7.3 Central limit theorem

The LLN shows the convergence of the sample mean to the population mean.
What about the entire sample distribution? This is addressed by the central
limit theorem (CLT), which, as its name suggests, is a limit theorem of central

importance in statistics.

The CLT states that for large n, the distribution of X̄n after standardization
approaches a standard Normal distribution, regardless of the underlying distri-
bution of Xi. By standardization, we mean that we subtract µ, the expected
value of X̄n, and divide by ω/

↗
n, the standard deviation of X̄n.

Theorem 7.3 (Central limit theorem). As n ↑ ↓,

↗
n

(
X̄n ↔ µ

ω

)
↑ N(0, 1) in distribution.

In other words, the CDF of the left-hand side approaches the CDF of the stan-
dard normal distribution.

Proof. We will prove the CLT assuming the MGF of the Xi exists, though the
theorem holds under much weaker conditions. Without loss of generality let
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µ = 1,ω2 = 1 (since we standardize it anyway). We show that the MGF of
↗
nX̄n = (X1 + · · ·+Xn)/

↗
n converges to the MGF of the N(0, 1).

The MGF of N(0, 1) is

E(etX) =

∫ →

↑→
e
tx · 1↗

2ϖ
e
↑x2/2

dx

=

∫ →

↑→

1↗
2ϖ

e
↑x2/2+tx

dx

=

∫ →

↑→

1↗
2ϖ

e
↑ 1

2 (x↑t)2+ 1
2 t

2

dx

= e
t2

2

∫ →

↑→

1↗
2ϖ

e
↑ 1

2 (x↑t)2
dx

= e
t2/2

Compute the MGF of
↗
nX̄n:

E(e
↓
nX̄n) = E(et(X1+···+Xn)/

↓
n)

= E(etX1/
↓
n)E(etX2/

↓
n) · · ·E(etXn/

↓
n)

=
[
E(etXi/

↓
n)
]n

since i.i.d

=

[
E

(
1 +

tXi↗
n
+

t
2
X

2
i

2n
+ o(n↑1)

)]n

=

[
1 +

t↗
n
E(Xi) +

t
2

2n
E(X2

i ) + o(n↑1)

]n

=

[
1 +

t
2

2n
+ o(n↑1)

]n

=

[
1 +

t
2
/2

n
+ o(n↑1)

]n

↑ e
t2/2 as n ↑ ↓

Therefore, the MGF of
↗
nX̄n approaches the MGF of the standard normal.

Since MGF determines the distribution, the distribution of
↗
nX̄n also ap-

proaches the standard normal distribution.

The CLT tells us about the limiting distribution of X̄n as n ↑ ↓. That means,
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we can reasonably approximate the distribution X̄n with normal distribution
when n is a finite large number —

X̄n ↘ N(µ,ω2
/n) for large n.

The Central Limit Theorem was first proved by Pierre-Simon Laplace in 1810.
Let’s take a moment to admire the generality of this result. The distribution
of the individual Xi can be anything in the world, as long as the mean and
variance are finite. This does mean the distribution of Xi is irrelevant, however.
If the distribution is fairly close to normal, the result would hold for smaller n.
If the distribution is far away from normal, it would take larger n to converge.

The CLT gives the distribution of the sample mean regardless of the underlying
distribution. This allows to assess the “quality” of the sample mean — how
close it is to the true mean. The LLN tells us the larger the sample, the closer
the sample mean to the population mean. The CLT tells us the distribution
of the sample mean for sample size n. For smaller n, the distribution is more
spread-out (a normal distribution with large ω

2); hence the uncertainty is huge,
other values are more likely. For larger n, the uncertainty is reduced, most
values would be centered around the true mean. We will delve deeper into this
when we get to hypothesis testing.

Example 7.3. Suppose that a fair coin is tossed 900 times. Approximate the
probability of obtaining more than 395 heads.

Solution: Let H =
∑900

i=1 Xi be the number of heads, where Xi → Bern( 12 ). We
could compute the probability by

P (H > 495) =
900∑

k=496

(
900

k

)(
1

2

)k (1

2

)900↑k

But this is quite tedious. Because n = 900 is reasonably large, we can apply
the CLT:
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1

n

900∑

i=1

Xi → N(µ,ω2
/n) or

900∑

i=1

Xi → N(nµ, nω2)

We know µ = E(Xi) = 1
2 , ω

2 = V ar(Xi) = 1
4 . Thus H → N(450, 225).

Therefore,

P (H > 495) = 1↔ P (H ≃ 495) ↘ 1↔ !

(
495↔ 450

15

)
= 0.0013.

7.4 Estimator accuracy

This section introduces some measures regarding the accuracy of an estimator.

Definition 7.1. The bias of an estimator ε̂ of a parameter ε is

Bias[ε̂] = E(ε̂)↔ ε.

We say that an estimator is biased if its sampling is incorrectly centered. We
say that an estimator is unbiased is the bias is zero.

Theorem 7.4. X̄n is unbiased for µ = E(x) if E(X) < ↓.

Proof.

E(X̄n) = E

(
1

n

n∑

i=1

Xi

)
=

1

n

n∑

i=1

E(Xi) =
1

n

n∑

i=1

µ = µ.

Theorem 7.5. If ε̂ is an unbiased estimator of ε, then ϱ̂ = aε̂+b is an unbiased
estimator of ϱ = aε + b.

But obtaining an unbiased estimator is not always as straightforward as it seems.
Consider the sample variance as an estimator for the population variance. By
the analog principle, the sample variance should be
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ω̂
2 =

1

n

n∑

i=1

(Xi ↔ X̄n)
2

=
1

n

n∑

i=1

(Xi ↔ µ)2 ↔
(
1

n

n∑

i=1

(Xi ↔ µ)

)2

= ω̃
2 ↔ (X̄n ↔ µ)2

We know that

E(ω̃2) =
1

n

n∑

i=1

E(Xi ↔ µ)2 = ω
2

Thus, if we compute the bias of this estimator:

E[ω̂2] = ω
2 ↔ ω

2

n
=

(
1↔ 1

n

)
ω
2

Bias[ω̂2] = ↔ω
2

n
⇐= 0

Therefore, the estimator ω̂2 is a biased estimator for ω2! To correct the bias, we
divide the sample sum of squares by (n↔ 1).

s
2 =

n

n↔ 1
ω̂
2 =

1

n↔ 1

n∑

i=1

(Xi ↔ X̄n)
2
.

It is straightforward to see that s
2 is an unbiased estimator for ω

2. We call s2

the bias-corrected variance estimator.

Theorem 7.6. s
2 is an unbiased estimator for ω

2 if E(X2) < ↓.

Definition 7.2. The mean square error of an estimator ε̂ for ε is

MSE[ε̂] = E

[
(ε̂ ↔ ε)2

]
.

By expanding the square we find that
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MSE[ε̂] = E

[
(ε̂ ↔ ε)2

]

= E

[
(ε̂ ↔ E[ε̂] + E[ε̂]↔ ε)2

]

= E

[
(ε̂ ↔ E[ε̂])2

]
+ 2E(ε̂ ↔ E[ε̂])(E[ε̂]↔ ε) + (E[ε̂]↔ ε)2

= V ar[ε̂] + (Bias[ε̂])2.

Thus the MSE is the variance plus the squared bias. The MSE as a measure of
accuracy combines the variance and bias.

Theorem 7.7. For any estimator with a finite variance, we have

MSE[ε̂] = V ar[ε̂] + (Bias[ε̂])2.

Definition 7.3. An estimator is consistent if MSE[ε̂] ↑ 0 as n ↑ ↓.

Bias is the property of an estimator for finite samples. Consistency is the prop-
erty of an estimator when the sample size gets large. It means that for any
given data distribution, there is a sample size n su"ciently large such that the
estimator ε̂ will be arbitrarily close to the true value ε with high probability.
In practice, we usually do not know how large this n has to be. But it is a
desirable property for an estimator to be considered a “good” estimator.

For unbiased estimator, MSE is solely determined by the variance of the esti-
mator. Recall that the variance for the sample mean is V ar(X̄n) = ω

2
/n. But

this is not a very useful formula because the it depends on unknown parameter
ω
2. We need to replace these unknown parameters by estimators. To put the

latter in the same units as the parameter estimate we typically take the square
root before reporting. We thus arrive at the following concept.

Definition 7.4. A standard error of an estimator ε̂ is defined as

SE(ε̂) = V̂
1/2

where V̂ is the estimator for V ar[ε̂].

Definition 7.5. The standard error for X̄n is

SE(X̄n) =
s↗
n
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where s is the bias-corrected estimator for ω.

Note the di!erence between standard error and standard deviation. Stan-
dard deviation describes the dispersion of a distribution. Standard error is the
standard deviation of an estimator. It indicates the “precision” of the estimator,
thereby carrying a sense of “error”. The smaller the standard error, the more
precise the estimator.

7.5 Confidence intervals

Confidence intervals provide a method of adding more information to an esti-
mator ε̂ when we wish to estimate an unknown parameter ε. We can find an
interval (A,B) that we think has high probability of containing ε. The length
of such an interval gives us an idea of how closely we can estimate ε.

Definition 7.6. A 100(1↔ς)% confidence interval (CI) for ε is an interval
[L(ε), U(ε)] such that the probability that the interval contains the true ε is
(1↔ ς).

Due to randomness we rarely seek a confidence interval with 100% coverage as
this would typically need to be the entire parameter space. Instead we seek an
interval which includes the true value with reasonably high probability. Stan-
dard choices are ς = 0.05 and 0.10, corresponding to 95% and 90% confidence.

Confidence intervals are reported to indicate the degree of precision of our es-
timates. The narrower the confidence interval, the more precise the estimate.
Because a small range of values contains the true parameter with high proba-
bility.

With the help of the CLT, it is not hard to find the CI for the sample mean X̄n.
Let’s set ς = 5%, that is, we are trying to find the CI that contains the true
mean 95% of the times. Assume our sample size n is large enough to invoke the
CLT, we thus have

X̄n ↔ µ

ω/
↗
n

→ N(0, 1)
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We want to find L and U such that

P (L ≃ X̄n ↔ µ

ω/
↗
n

≃ U) = 1↔ 2!(L) = 0.95

since the normal distribution is symmetric, L = ↔U . By looking at the CDF of
standard normal, we get L = ↔1.96, U = 1.96. So the interval is

↔1.96 ≃ X̄n ↔ µ

ω/
↗
n

≃ 1.96

With a little rearrangement, we have

X̄n ↔ 1.96
ω↗
n
≃ µ ≃ X̄n + 1.96

ω↗
n

Thus, the interval
[
X̄n ↔ 1.96 ω↓

n
, X̄n + 1.96 ω↓

n

]
contains the true mean 95% of

the times.

Theorem 7.8. The 100(1 ↔ ς)% confidence interval for the sample mean X̄n

is X̄n ± zε/2
ω↓
n
, where zε/2 is the critical value such that !(zε/2) = ε

2 .

In practice, because we do not know ω/
↗
n, we replace it with the standard error

s/
↗
n. Thus, we compute the confidence interval as X̄n ± zε/2SE. However,

this replacement is not without risk. When the sample size is small, s is a very
poor estimate of ω. For the approximation to be valid, we require either the
sample size is large enough (n ⇒ 30 at least) or the population distribution is
nearly normal. Some commonly used confidence levels:

• 90% CI: ς = 0.1, z0.05 = 1.645

• 95% CI: ς = 0.05, z0.025 = 1.96

• 99% CI: ς = 0.01, z0.005 = 2.58

We go through some common misunderstandings about confidence intervals
through an example.

Example 7.4. A random sample of 50 college students were asked how many
exclusive relationships they have been in so far. This sample yielded a mean
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of 3.2 and a standard deviation of 1.74. Estimate the true average number of
exclusive relationships using this sample. 2

Solution: We know X̄ = 3.2, s = 1.74. The standard error is

SE =
1.74↗
50

↘ 0.5

The approximate 95% CI is therefore

X̄ ± 1.96SE ↘ 3.2± 0.5 = (2.7, 3.7).

Now check the following interpretations (true or false):

1. We are 95% confident that the average number of exclusive relationships
in this sample is between 2.7 and 3.7.

False. The CI definitely contains the sample mean X̄.

2. 95% of college students have been in 2.7 to 3.7 exclusive relationships.

False. The CI is about covering the population mean, not for covering
95% of the entire population.

3. There is 0.95 probability that the true mean falls in the interval (2.7, 3.7).

False. The true mean µ is a fixed number, not a random one that happens
with a probability.

4. The interval (2.7, 3.7) has probability of 0.95 of enclosing the true mean
number of exclusive relationships of college students.

False. The true mean is either in the interval or not. There is no uncer-
tainty involved.

5. If a new random sample of size 50 is taken, we are 95% confident that the
new sample mean will be between 2.7 and 3.7.

False. The confidence interval is for covering the population mean, not for
covering the mean of another sample.

6. This confidence interval is not valid since the number of exclusive rela-
tionships is integer-valued. Neither the population nor sample is normally
distributed.

2
This section and the next are based on Dr. Yibi Huang’s lecture slides.
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False. The construction of the CI only uses the normality of the sampling
distribution of the sample mean (by the CLT). Neither the population nor
the sample is required to be normally distributed.

So what is exactly the thing that has a 95% change to happen? It is the
procedure to construct the 95% interval. About 95% of the intervals constructed
following the procedure will cover the true population mean µ. After taking the
sample and an interval is constructed, the constructed interval either covers µ

or it doesn’t. But if we were able to take many such samples and reconstruct
the interval many times, 95% of the intervals will contain the true mean.

7.6 Hypothesis testing*

One day I woke up in the morning and came up with a question: Am I the
average height of a Chinese man? I hypothesize that I am. My height is

↗
3 ↘

1.73 meters. Let µ be the average height of Chinese men. My hypothesis is

H0 : µ =
↗
3

This is called the null hypothesis. I also suspect that the average Chinese
men is taller than me (if the original hypothesis is false).

H1 : µ >

↗
3

This is called the alternative hypothesis. How am I able to test which hypoth-
esis is true? I can answer this question by collecting a small sample. Suppose I
asked 50 people around me, and computed a sample average of X̄ = 1.76. Also
assume we know the standard deviation ω = 0.1 (despite this is unrealistic).
Does it prove or disprove the hypothesis?

By the CLT, we know X̄↑µ
ω/

↓
n

is approximately standard normal. Suppose H0 is
true, we compute

Z =
X̄ ↔ µ

ω/
↗
n

=
1.76↔

↗
3

0.1/
↗
50

= 1.98
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which is know as the z-score of the sample mean. Thus, the probability of
X̄ > 1.76 is

P (X̄ > 1.76) = 1↔ ! (Z = 1.98) = 0.023

That is the small red region in the graph. That means, if H0 is true, we only
have a very small chance of observing X̄ = 1.76. Therefore, the hypothesis H0

is likely false. In other words, if we reject H0 and accept the alternative H1, the
probability that we have made a mistake is very low.

However, if we had observed X̄ = 1.73. The probability above is 0.56. That
means we are very likely to observe this value if H0 is true. In this case, it
would be reasonable to accept H0. In other words, we do not have strong
enough evidence to reject the hypothesis.

The probability represented by the red area is called the p-value. The p-value
is the probability of obtaining test results at least as extreme as the result
actually observed, under the assumption that the null hypothesis is correct. A
very small p-value means that such an extreme observed outcome would be very
unlikely under the null hypothesis. Thus, The smaller the p-value, the stronger
the evidence against the H0.

In some studies, we can simply report the p-value and let people judge whether
the evidence is strong enough. In other studies, we prefer to select a cut-o!
value ς, call the significance level, and follow the rule:

• If the p-value < ς, reject H0;

• If the p-value > ς, do not reject H0.
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Commonly used significance levels: 0.05 and 0.01. And we like to use the word
“significant” to describe the test result:

• A test with p-value < 0.05 is said to be (statistically) significant;

• A test with p-value < 0.01 is said to be highly significant.

When we make a decision about accepting or rejecting a hypothesis, there are
chances that we make a mistake. There are two types of mistakes: Type 1

error and Type 2 error.

Decision

Reject H0 Fail to reject H0

Truth
H0 is true Type 1 error ↭
H0 is false ↭ Type 2 error

Type 1 error is rejecting the H0 when it is true. Type 2 error is failing to
reject the H0 when it is false. Usually, it is more important to control the Type
1 error than the the Type 2 error. That is, we want to minimize the chance of
falsely rejecting the null hypothesis.

In the example above, we reject the null hypothesis on the ground that there
is only 2.3% of the chance that we could observe this sample. Therefore, the
probability of Type 1 error is only 2.3%.

If we make decisions based on a significance level, the significance level is the
Type 1 error rate. In other words, when using a 5% significance level, there is
5% chance of making a Type 1 error.

P (Type 1 error|H0 is true) = ς

This is why we prefer small values of ς—smaller ς reduces the Type 1 error
rate. However, significance level doesn’t control Type 2 error rate.

Hypothesis testing with z-statistics

We may have noticed that, in the above example, the assumption that the
population ω is known is unrealistic. In practice, we approximate it with the
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standard error s/
↗
n. The approximate is valid if the the sample size is large

enough or the underlying distribution is nearly normal. If this is not the case, we
would opt for a t-test. Here we summarize the steps of testing for a population
mean with z-statistics.

1. Set up the hypothesis:

• H0 : µ = µ0

• H1 : µ < or > or ⇐= µ0

2. Check assumptions and conditions

• independent and identically distributed (i.i.d)

• Nearly normal distribution or the sample size is large enough

3. Compute the test statistic and the p-value:

Z =
X̄ ↔ µ

s/
↗
n

4. Make decision:

• If p-value < ς, reject H0

• If p-value > ς, do not reject H0

We notice that the two-sided hypothesis tests are very closed related to the
concept of confidence intervals. A two-sided test means we are interested in
rejection regions on both sides of the tail distribution. Typically, the alternative
hypothesis is H1 : µ ⇐= µ0.
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Suppose we are doing a hypothesis test under the significance level ς, the region
of accepting the H0 is

↔zε/2 ≃ X̄ ↔ µ

SE
≃ zε/2

such that the rejection region (p-value) has probability ς. This is equivalent to

X̄ ↔ zε/2SE ≃ µ ≃ X̄ + zε/2SE

which is exactly the 100(1 ↔ ς)% confidence interval of X̄. Therefore, for a
two-sided test, we have the rule:

• Reject H0 if µ is not in the 100(1↔ ς)% CI: X̄ ± zε/2SE

We conclude this chapter by reiterating a couple of critical points that could be
easily misunderstood.

Rejecting H0 doesn’t means we are 100% sure that H0 is false. We might make
Type 1 errors. Setting a significance level just guarantee we won’t make Type
1 error too often.

Failing to reject H0 does not necessarily mean H0 is true. We could make a
type 2 error when failing to reject H0. Moreover, unlike type 1 error rate is
controlled at a low level, type 2 error rate is usually quite high. When we fail
to reject H0, it just means the data are not able to distinguish between H0 and
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H1. That’s why we say fail to reject. p-value is not the probability that the H0

is true.

Saying that results are statistically significant just informs the reader that the
findings are unlikely due to chance alone. However, it says nothing about the
practical importance of the finding. For example, rejecting the H0: µ = µ0 does
not tell us how big the di!erence |µ ↔ µ0| is. Mostly in practice we care more
about the magnitude of this di!erence, rather than the fact that they are indeed
di!erent. It is possible that the di!erence is too small to be relevant even if it
is significant.

Hypothesis testing with t-statistics

When the sample size is small, we opt for t-test for more reliable hypothsis
testing. Define test statistics

T =
X̄ ↔ µ

s/
↗
n

where s is the sample standard deviation. For small samples, this test statistics
follows a Student t-distribution with n degrees of freedom, T → t(n).

Why Student-t distribution? Recall the definition of Student-t distribution:
when the underlying distribution of X1, X2, . . . , Xn is Normal, sample variance
s
2 follows a φ

2 distribution. T follows t distribution by definition regardless
of the sample size. However, if the underlying distribution is not normal, this
argument loses ground. We use t-test mainly as a convention. But t distribution
has heavier tails than standard normal, meaning that we are more likely to reject
a hypothesis based on t distribution. In other words, t-test is a more conservative
choice than z-test for small samples.

one-tail ς 0.05 0.025 0.005
two-tail ς 0.10 0.05 0.01

d.f.
10 1.812 2.228 3.169
20 1.725 2.086 2.845
30 1.697 2.042 2.750

z value 1.645 1.960 2.576
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The table shows a few critical values for t-test with di!erent degrees of freedom
(d.f.). We can see as the sample size gets larger, t distribution converges to
standard normal.


